Атомное ядро: строение, масса, состав. Школьная энциклопедия

Добавить сайт в закладки

Понятие атом. Строение атома и атомного ядра

Атом является наименьшей частицей элемента, сохраняющей его характеристики.

Атомы различных элементов отличаются друг от друга. Поскольку существует свыше 100 различных элементов, то существует и свыше 100 различных видов атомов.

Рис 1-2. Части атома.

Каждый атом имеет ядро, расположенное в центре атома. Оно содержит положительно заряженные частицы – протоны и незаряженные частицы – нейтроны.

Электроны, отрицательно заряженные частицы, вращаются вокруг ядер (см. Рис. 1-2).

Количество протонов в ядре атома называется атомным номером элемента.

Рис. 1-3. Электроны, расположенные на оболочках вокруг ядра.

Атомные номера позволяют отличить один элемент от другого. Каждый элемент имеет атомный вес. Атомный вес - это масса атома, которая определяется общим числом протонов и нейтронов в ядре. Электроны практически не дают вклада в общую массу атома, масса электрона составляет только 1/1845 часть массы протона и ею можно пренебречь.

Электроны вращаются по концентрическим орбитам вокруг ядра. Каждая орбита называется оболочкой. Эти оболочки заполняются в следующей последовательности: сначала заполняется оболочка К, затем L, М, N и т.д. (см. Рис. 1-3). Максимальное количество электронов, которое может разместиться на каждой оболочке, показано на Рис. 1-4.

Внешняя оболочка называется валентной, и количество электронов, содержащееся в ней, называется валентностью. Чем дальше от ядра валентная оболочка, тем меньшее притяжение со стороны ядра испытывает каждый валентный электрон. Таким образом, потенциальная возможность атома присоединять или терять электроны увеличивается, если валентная оболочка не заполнена и расположена достаточно далеко от ядра.

Рис. 1-4 и 1-5. Состав атома.

Электроны валентной оболочки могут получать энергию. Если эти электроны получат достаточно энергии от внешних сил, они могут покинуть атом и стать свободными электронами, произвольно перемещающимися от атома к атому. Материалы, содержащие большое количество свободных электронов, называются проводниками.

Рис. 1-6. Валентность меди.

На Рис. 1-5 сравниваются проводимости различных металлов, используемых в качестве проводников. В таблице серебро, медь и золото имеют валентность, равную единице (см. Рис. 1-6). Однако серебро является лучшим проводником, поскольку его валентные электроны слабее связаны.

Изоляторы, в противоположность проводникам, препятствуют протеканию электричества. Изоляторы стабильны благодаря тому, что валентные электроны одних атомов присоединяются к другим атомам, заполняя их валентные оболочки, препятствуя, таким образом, образованию свободных электронов.

Рис. 1-7. Диэлектрические свойства различных материалов, используемых в качестве изоляторов.

Материалы, классифицируемые как изоляторы, сравниваются на Рис. 1-7. Слюда является наилучшим изолятором, потому что она имеет наименьшее число свободных электронов на своих валентных оболочках.

Промежуточное положение между проводниками и изоляторами занимают полупроводники.Полупроводники не являются ни хорошими проводниками, ни хорошими изоляторами, но они важны, потому что их проводимость можно изменять от проводника до изолятора. Кремний и германий являются полупроводниковыми материалами.

Об атоме, который имеет одинаковое число электронов и протонов, говорят, что он электрически нейтрален. Атом, получающий один или более электронов, не является электрически нейтральным. Он становится отрицательно заряженным и называется отрицательным ионом. Если атом теряет один или более электронов, то он становится положительно заряженным и называется положительным ионом. Процесс присоединения или потери электронов называется ионизацией. Ионизация играет большую роль в протекании электрического тока.

  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число – общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов частиц-протонов и нейтронов. Эти частицы носят название нуклонов. Протон. Протон обладает зарядом и массой

    Для сравнения укажем, что масса электрона равна

    Из сопоставления (66.1) и (66.2) следует, что -Протон имеет спин, равный половине и собственный магнитный момент

    Единица магнитного момента, называемая ядерным магнетоном. Из сравнения с (33.2) вытекает, что в 1836 раз меньше магнетона Бора . Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.

    Нейтрон. Нейтрон был открыт в 1932 г. английским физиком Д. Чедвиком. Электрический заряд его равен нулю, а масса

    очень близка к массе протона.

    Разность масс нейтрона и протона составляет 1,3 МэВ, т. е. .

    Нейтрон обладает спином, равным половине и (несмотря на отсутствие электрического заряда) собственным магнитным моментом

    (знак минус указывает на то, что направления собственных механического и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано в § 69.

    Отметим, что отношение экспериментальных значений с большой степенью точности равно -3/2. Это было замечено лишь после того, как такое значение было получено теоретически.

    В свободном состоянии нейтрон нестабилен (радиоактивен) - самопроизвольно распадается, превращаясь в протон и испуская электрон и еще одну частицу, называемую антинейтрино (см. § 81). Период полураспада (т. е. время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. Схему распада можно написать следующим образом:

    Масса антинейтрино равна нулю. Масса нейтрона больше массы протона на Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения (66.7), на т. е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

    Характеристики атомного ядра. Одной из важнейших характеристик атомного ядра является зарядовое число Z. Оно равно количеству протонов, входящих в состав ядра, и определяет его заряд, который равен Число Z определяет порядковый номер химического элемента в периодической таблице Менделеева. Поэтому его также называют атомным номером ядра.

    Число нуклонов (т. е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно

    Для обозначения ядер применяется символ

    где под X подразумевается химический символ данного элемента. Слева вверху ставится массовое число, слева внизу - атомный номер (последний значок часто опускают).

    Иногда массовое число пишут не слева, а справа от символа химического элемента

    Ядра с одинаковым Z, но разными А называются изотопами. Большинство химических элементов имеет по нескольку стабильных изотопов. Так, например, у кислорода имеется три стабильных изотопа: у олова - десять, и т. д.

    Водород имеет три изотопа:

    Протий и дейтерий стабильны, тритий радиоактивен.

    Ядра с одинаковым массовым числом А называются изобарами. В качестве примера можно привести и Ядра с одинаковым числом нейтронов носят название изотонов Наконец, существуют радиоактивные ядра с одинаковыми Z и А, отличающиеся периодом полураспада. Они называются изомерами. Например, имеются два изомера ядра у одного из них период полураспада равен 18 мин, у другого - 4,4 часа.

    Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, остальные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.

    В природе встречаются элементы с атомным номером Z от 1 до 92, исключая технеций и прометий Плутоний после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале - смоляной обманке. Остальные трансурановые (т. е. заурановые) элементы (с Z от 93 до 107) были получены искусственным путем посредством различных ядерных реакций.

    Трансурановые элементы кюрий , эйнштейний , фермий ) и менделевий ) получили названия в честь выдающихся ученых П. и М. Кюри, А. Эйнштейна, Э. Ферми и Д. И. Менделеева. Лоуренсий назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий ) получил свое название в честь выдающегося советского физика И. В. Курчатова.

    Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне советским ученым Г. Н. Флеровым и его сотрудниками.

    Размеры ядер. В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой

    (ферми - название применяемой в ядерной физике единицы длины, равной см). Из формулы (66.8) следует, что объем ядра пропорционален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.

    Спин ядра. Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен Поэтому квантовое число спина ядра l будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А. Спины ядер l не превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т. е. ядер с четным числом протонов и четным числом нейтронов) спин равен нулю.

    Состав и характеристика атомного ядра .

    Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов элементарных частиц - протонов и нейтронов. Эти частицы носят название нуклонов.

    Протон . Протоно (p) обладает зарядом +eи массой

    m p = 938,28 МэВ

    Для сравнения укажем, что масса электрона равна

    m e = 0,511 МэВ

    Из сопоставления и следует, что m p = 1836m e

    Протон имеет спин, равный половине (s= ), и собственный магнитный момент

    Единица магнитного момента, называемая ядерным магнетоном. Из сравнения масс протона и электрона вытекает, что μ я в 1836 раз меньше магнетона Бора μ б. Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.

    Нейтрон . Нейтрон (n) был открыт в 1932 г. английским физи­ком

    Д. Чедвиком. Электрический заряд этой частицы равен нулю, а масса

    m n = 939,57МэВ

    очень близка к массе протона. Разность масс нейтрона и протона (m n –m p)

    составляет 1,3 МэВ, т.е. 2,5 m e .

    Нейтрон обладает спином, равным половине (s= ) и (не­смотря на отсутствие электрического заряда) собственным магнитным моментом

    μ n = - 1,91μ я

    (знак минус указывает на то, что направления собственных механи­ческого и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано позже.

    Отметим, что отношение экспериментальных значений μ p и μ n с большой степенью точности равно - 3/2 . Это было замечено лишь после того, как такое значение было получено теоретически.

    В свободном состоянии нейтрон нестабилен (радиоактивен) – он самопроизвольно распадается, превращаясь в протон и испуская электрон (e -) и еще одну частицу, называемую антинейтрино
    . Период полураспада (т.е. время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. Схе­му распада можно написать следующим образом:

    Масса покоя антинейтрино равна нулю. Масса нейтрона больше массы прото­на на 2,5m e . Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения на 1,5m e , т.е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

    Характеристики атомного ядра . Одной из важнейших характерис­тик атомного ядра является зарядовое числоZ. Оно равно коли­честву протонов, входящих в состав ядра, и определяет его заряд, который равен +Z e . ЧислоZопределяет порядковый номер химичес­кого элемента в периодической таблице Менделеева. Поэтому его так­же называют атомным номером ядра.

    Число нуклонов (т.е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно N=A–Z.

    Для обозначения ядер применяется символ

    где под Xподразумевается химический символ данного элемента. Слева вверху ставится массовое число, слева внизу – атомный номер (последний значок часто опускают). Иногда массовое число пишут не слева, а справа от символа химического элемента

    Ядра с одинаковым Z, но разными А называютсяизотопами . Большинство химических элементов имеет по несколько стабильных изотопов. Так, например, у кислорода имеется три стабильных изотопа:

    , у олова - десять, и т.д.

    Водород имеет три изотопа:

    – обычный водород, или протий (Z=1, N=0),

    – тяжелый водород, или дейтерий (Z=1, N=1),

    – тритий (Z=1, N=2).

    Протий и дейтерий стабильны, тритий радиоактивен.

    Ядра с одинаковым массовым числом А называются изобарами . В качестве примера можно привести
    и
    . Ядра с одинако-­ вым числом нейтроновN = A – Z носят названиеизотонов (
    ,
    ).Наконец, существуют радиоактивные ядра с одинаковымиZ и A, отличающиеся периодом полураспада. Они называютсяизомерами . Напри-­ мер, имеются два изомера ядра
    , у одного из них период полу­-распада равен 18 мин, у другого – 4,4 часа.

    Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, осталь­ные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.

    В природе встречаются элементы с атомным номером Z от1до 92, исключая технеций (Tc, Z = 43) и прометий (Pm, Z = 61). Плутоний (Pu, Z = 94) после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале – смоляной обманке. Остальные трансурановые (т.е. заурановые) элементы (сZ от 93 до 107) были получены искусственным путем посредством различ­ных ядерных реакций.

    Трансурановые элементы кюрий (96 Cm), эйнштейний (99 Es),фермий (100 Fm) и менделевий (101 Md) получили название в честь выдающихся ученыхII. и М. Кюри, А. Эйнштейна, З. Ферми и Д.И. Менделеева. Лоуренсий (103 Lw) назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий (104 Ku) получил свое название в честь выдающегося физика И.В. Курчатова.

    Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реак­ций Объединенного института ядерных исследований в Дубне ученым

    Н.Н. Флеровым и его сотрудниками.

    Размеры ядер . В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой

    (ферми – название применяемой в ядерной физике единицы длины, рав­ной

    10 -13 см). Из формулы следует, что объем ядра пропорцио­нален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.

    Спин ядра . Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен 1/2. Поэтому квантовое число спина ядра будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А. Спины ядерJне превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т.е. ядро с четным числом протонов и четным чис­лом нейтронов) спин равен нулю.

    Механический момент ядра M J складывается с моментом электрон­ной оболочки
    в полный момент импульса атомаM F , который определяется квантовым числом F.

    Взаимодействие магнитных моментов электронов и ядра приводит к тому, что состояния атома, соответствующие различным взаимным ориентациям M J и
    (т.е. различнымF), имеют немного отли­чающуюся энергию. Взаимодействием моментов μ L иμ S обусловлива­ется тонкая структура спектров. Взаимодействиемμ J и определяется сверхтонкая структура атомных спектров. Расщеп­ление спектральных линий, соответствующее сверхтонкой структуре, настолько мало (порядка нескольких сотых ангстрема), что может на­блюдаться лишь с помощью приборов самой высокой разрешающей силы.

    Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

    Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

    Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода
    ). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

    Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

    Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

    Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

    Ядро обозначается тем же символом, что и нейтральный атом:
    , гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

    Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

    Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

    Е , МэВ

    Уровни энергии

    и наблюдаемые переходы для ядра атома бора

    Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

    Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра
    .Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.



    Статьи по теме: