Динамическое программирование. Оптимальное распределение средств между предприятиями

В процессе эксплуатации оборудование подвергается физическому и моральному износу. Существует два способа восстановления оборудования - полное и частичное. При полном восстановлении оборудование меняется на новое, при частичном оборудование ремонтируется. Для оптимального использования оборудования нужно найти возраст, при котором его необходимо заменить, чтобы доход от машины был максимальным или, если доход подсчитать не удается, издержки на ремонтно-эксплуатационные нужды были минимальными. Данный подход рассматривается с позиции экономических интересов потребителя.

Для оптимизации ремонта и замены оборудования требуется разработать на плановый период стратегию по замене машины. В качестве экономических интересов может быть использован один из двух подходов:

1. Максимум дохода от машины за определенный промежуток времени.

2. Минимум затрат на ремонтно-эксплуатационный нужды, если доход подсчитать не удается.

Данная задача решается методом динамического программирования. Основная идея этого метода заключается в замене одновременного выбора большего количества параметров поочередным их выбором. Этим методом могут быть решены самые различные задачи оптимизации. Общность подхода к решению самых различных задач является одним из достоинств этого метода.

Рассмотрим механизм оптимизации ремонта и замены оборудования. Для решения задачи введем следующие обозначения:

t - возраст оборудования;

d(t) - чистый годовой доход от оборудования возраста t;

U(t) - издержки на ремонтно-эксплуатационные нужды машины возраста t;

С - цена нового оборудования.

Для решения этой задачи введем функцию fn(t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n - лет у нас была машина возраста t - лет.

Алгоритм решения задачи следующий:

1) f1(t) = max d(0) - С

) fn(t) = max fn-1(t+1) + d(t)

fn-1(1) + d(0) - С

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так:

d(t) = r(t) - u(t)

r(t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно - эксплуатационные нужды

оборудования возраста t.

Подход максимизации дохода

Для решения этой задачи введем функцию fn(t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n-лет у нас было оборудование возраста t-лет.

Если до конца периода остался 1 год

Если до конца периода осталось n лет

(t) = max

где t - возраст оборудования;

d (t) - чистый годовой доход от оборудования возраста t;

C - цена нового оборудования.

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так

(t) = r(t) - u(t)

где r (t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно-экплуатационные нужды оборудования возраста t.

Рассчитаем чистый доход по формуле, зная динамику поступления дохода и роста издержек на ремонт.

Таблица 2. Чистый доход от оборудования по годам

Задача замены оборудования состоит в определении оптимальных сроков замены старого оборудования (станков, производственных зданий и т.п.) в процессе его эксплуатации. С течением времени растут производственные затраты на текущий и капитальный ремонт и обслуживание, снижаются производительность труда, ликвидная стоимость.

Поэтому в определенный момент времени возникает необходимость (экономическая целесообразность) замены старого оборудования на новое. Критерием оптимальности являются, как правило, либо прибыль от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Таким образом, задача состоит в нахождении плана-графика замены старого оборудования на новое в течение планируемого периода эксплуатации.

Основная характеристика оборудования – параметр состояния – его возраст .

При составлении динамической модели замены процесс замены рассматривают как – шаговый, разбивая весь период эксплуатации на n шагов. Возможное управление на каждом шаге характеризуется качественными признаками, например,
(сохранить оборудование),
(заменить оборудование).

При решении задачи замены оборудования используются следующие исходные данные:

–период планирования;

–ликвидная стоимость оборудования (
);

–стоимость содержания оборудования (
);

–первоначальная стоимость оборудования ().

Уравнения состояний системы зависят от управления:

В самом деле, если к -ому шагу
, то при сохранении оборудования
через год возраст оборудования увеличится на 1. Если оборудование заменяется новым
, то это означает, что к началу-ого шага её возраст=0, а после года эксплуатации=1, т.е.
.

Показатель эффективности -ого шага:

.

Пусть
– условные оптимальные затраты на эксплуатацию оборудования, начиная с-ого шага до конца, при условии, что к началу-ого шага оборудование имеет возрастлет.

Тогда уравнения Беллмана будут иметь вид:

Геометрическое решение задачи замены оборудования. Схема расчетов при решении задачи замены оборудования может быть представлена в виде двухкоординатной диаграммы (графа). На оси абсцисс будем откладывать номер шага , на оси ординат – возраст оборудования. Точка
на плоскости соответствует началу-го года эксплуатации оборудования возрасталет. Перемещение на графике в зависимости от принятого управления на-м шаге показано на рисунке.

Над каждым отрезком, соединяющим точки
и
, записываются соответствующие управлению
затраты на сохранение оборудования, а над отрезком, соединяющим точки
и
, запишем затраты, соответствующие замене оборудования – управлению
. Таким образом, будут размечены все отрезки, соединяющие точки на графике, соответствующие переходам из любого состояния
в состояние.

Решение типового примера

Задание 4

На производственном предприятии «ТИТАН» оборудование эксплуатируется в течение
лет, после чего продается (считается, что послелет оборудование в результате морального износа не способно обеспечить выпуск конкурентоспособной продукции). В начале каждого года руководство предприятия принимает решение сохранить оборудование или заменить его новым аналогичным (при этом старое оборудование продается, а вырученные средства направляются на покрытие части стоимости нового оборудования). Первоначальная стоимость нового оборудования составляет
тыс. руб., затраты на содержание оборудования –
тыс. руб., и ликвидная стоимость оборудования –
тыс. руб. приведены в табл. 11.

Таблица 11

Исходные данные задачи замены оборудования

Необходимо:

1. Определить минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию оборудования в течение рассматриваемого периода .

2. Определить оптимальную стратегию (план-график) эксплуатации оборудования, обеспечивающую минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию в течение рассматриваемого периода в условиях текущих цен.

3. Дать экономическую интерпретацию полученного решения.

1. Определим минимальные суммарные затраты производственного предприятия «ТИТАН» на эксплуатацию оборудования в течение 5 лет. Проведем на размеченном графе (рис. 28) условную оптимизацию.

5 шаг. В состояниях (5, ) оборудование продается, условный оптимальный доход от продажи равен ликвидной стоимости
, но поскольку целевая функция связана с затратами, то в кружках точек (5,) ставим величину дохода со знаком «–».

Состояние (4,1).

Таким образом, если система к последнему шагу находилась в точке (4,1), то следует идти в точку (5,2) (укажем это направление пунктирной линией).

Состояние (4,2).

Данный сервис предназначен для онлайн решения задачи оптимальной стратегии обновления оборудования . Обычно в исходных данных задаются следующие параметры:

  • r(t) - стоимость продукции, произведенной в течение каждого года планового периода с помощью этого оборудования;
  • u(t) - ежегодные затраты, связанные с эксплуатацией оборудования;
  • s(t) - остаточная стоимость оборудования;
  • р - стоимость нового оборудования, включающая расходы, связанные с установкой, наладкой, запуском оборудования и не меняющаяся в данном плановом периоде.
Если стоимость оборудования не указана, будет решаться задача с функциями затрат и замены (задача планирования капитальных вложений).

Планирование капитальных вложений.

Пример №1 . Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r(t) и остаточная стоимость S(t) в зависимости от возраста заданы в таблице, стоимость нового оборудования равна P = 13 , а возраст оборудования к началу эксплуатационного периода составлял 1 год.
t 0 1 2 3 4 5 6
r(t) 8 7 7 6 6 5 5
s(t) 12 10 8 8 7 6 4
Решение .
I этап. Условная оптимизация (k = 6,5,4,3,2,1).
Переменной управления на k-м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k-го года.
1-й шаг: k = 6. Для 1-го шага возможные состояния системы t = 1,2,3,4,5,6, а функциональные уравнения имеют вид:
F 6 (t) = max(r(t), (C); S(t) - P + r(0), (З))
F 6 (1) = max(7 ; 10 - 13 + 8) = 7 (C)
F 6 (2) = max(7 ; 8 - 13 + 8) = 7 (C)
F 6 (3) = max(6 ; 8 - 13 + 8) = 6 (C)
F 6 (4) = max(6 ; 7 - 13 + 8) = 6 (C)
F 6 (5) = max(5 ; 6 - 13 + 8) = 5 (C)
F 6 (6) = max(5 ; 4 - 13 + 8) = 5 (C)
2-й шаг: k = 5. Для 2-го шага возможные состояния системы t = 1,2,3,4,5, а функциональные уравнения имеют вид:
F 5 (t) = max(r(t) + F 6 (t+1) ; S(t) - P + r(0) + F 6 (1))
F 5 (1) = max(7 + 7 ; 10 - 13 + 8 + 7) = 14 (C)
F 5 (2) = max(7 + 6 ; 8 - 13 + 8 + 7) = 13 (C)
F 5 (3) = max(6 + 6 ; 8 - 13 + 8 + 7) = 12 (C)
F 5 (4) = max(6 + 5 ; 7 - 13 + 8 + 7) = 11 (C)
F 5 (5) = max(5 + 5 ; 6 - 13 + 8 + 7) = 10 (C)
F 5 (6) = max(5 + ; 4 - 13 + 8 + 7) = 6 (З)
3-й шаг: k = 4. Для 3-го шага возможные состояния системы t = 1,2,3,4, а функциональные уравнения имеют вид:
F 4 (t) = max(r(t) + F 5 (t+1) ; S(t) - P + r(0) + F 5 (1))
F 4 (1) = max(7 + 13 ; 10 - 13 + 8 + 14) = 20 (C)
F 4 (2) = max(7 + 12 ; 8 - 13 + 8 + 14) = 19 (C)
F 4 (3) = max(6 + 11 ; 8 - 13 + 8 + 14) = 17 (C/З)
F 4 (4) = max(6 + 10 ; 7 - 13 + 8 + 14) = 16 (C/З)
F 4 (5) = max(5 + 6 ; 6 - 13 + 8 + 14) = 15 (З)
F 4 (6) = max(5 + ; 4 - 13 + 8 + 14) = 13 (З)
4-й шаг: k = 3. Для 4-го шага возможные состояния системы t = 1,2,3, а функциональные уравнения имеют вид:
F 3 (t) = max(r(t) + F 4 (t+1) ; S(t) - P + r(0) + F 4 (1))
F 3 (1) = max(7 + 19 ; 10 - 13 + 8 + 20) = 26 (C)
F 3 (2) = max(7 + 17 ; 8 - 13 + 8 + 20) = 24 (C)
F 3 (3) = max(6 + 16 ; 8 - 13 + 8 + 20) = 23 (З)
F 3 (4) = max(6 + 15 ; 7 - 13 + 8 + 20) = 22 (З)
F 3 (5) = max(5 + 13 ; 6 - 13 + 8 + 20) = 21 (З)
F 3 (6) = max(5 + ; 4 - 13 + 8 + 20) = 19 (З)
5-й шаг: k = 2. Для 5-го шага возможные состояния системы t = 1,2, а функциональные уравнения имеют вид:
F 2 (t) = max(r(t) + F 3 (t+1) ; S(t) - P + r(0) + F 3 (1))
F 2 (1) = max(7 + 24 ; 10 - 13 + 8 + 26) = 31 (C/З)
F 2 (2) = max(7 + 23 ; 8 - 13 + 8 + 26) = 30 (C)
F 2 (3) = max(6 + 22 ; 8 - 13 + 8 + 26) = 29 (З)
F 2 (4) = max(6 + 21 ; 7 - 13 + 8 + 26) = 28 (З)
F 2 (5) = max(5 + 19 ; 6 - 13 + 8 + 26) = 27 (З)
F 2 (6) = max(5 + ; 4 - 13 + 8 + 26) = 25 (З)
6-й шаг: k = 1. Для 6-го шага возможные состояния системы t = 1, а функциональные уравнения имеют вид:
F 1 (t) = max(r(t) + F 2 (t+1) ; S(t) - P + r(0) + F 2 (1))
F 1 (1) = max(7 + 30 ; 10 - 13 + 8 + 31) = 37 (C)
F 1 (2) = max(7 + 29 ; 8 - 13 + 8 + 31) = 36 (C)
F 1 (3) = max(6 + 28 ; 8 - 13 + 8 + 31) = 34 (C/З)
F 1 (4) = max(6 + 27 ; 7 - 13 + 8 + 31) = 33 (C/З)
F 1 (5) = max(5 + 25 ; 6 - 13 + 8 + 31) = 32 (З)
F 1 (6) = max(5 + ; 4 - 13 + 8 + 31) = 30 (З)
Результаты вычислений по уравнениям Беллмана F k (t) приведены в таблице, в которой k - год эксплуатации, а t - возраст оборудования.
Таблица – Матрица максимальных прибылей
k / t 1 2 3 4 5 6
1 37 36 34 33 32 30
2 31 30 29 28 27 25
3 26 24 23 22 21 19
4 20 19 17 16 15 13
5 14 13 12 11 10 6
6 7 7 6 6 5 5

В таблице выделено значение функции, соответствующее состоянию (З) - замена оборудования.
При решении данной задачи в некоторых таблицах при оценке выбора нужного управления мы получали одинаковые значения F для обоих вариантов управления. В этом случае, в соответствии с алгоритмом решения подобных задач необходимо выбирать управление сохранения оборудования.
II этап. Безусловная оптимизация (k = 6,5,4,3,2,1).
По условию задачи возраст оборудования равен t 1 =1 годам. Плановый период N=6 лет.
К началу 1-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 1 = t 0 + 1 = 0 + 1 = 1. Прибыль составит F 1 (1)=37.
Оптимальное управление при k = 1, x 1 (1) = (C), т.е. максимум дохода за годы с 1-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 2-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 1 + 1 = 2. Прибыль составит F 2 (2)=30.
Оптимальное управление при k = 2, x 2 (2) = (C), т.е. максимум дохода за годы с 2-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 3-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 2 + 1 = 3. Прибыль составит F 3 (3)=23.
Безусловное оптимальное управление при k = 3, x 3 (3)=(З), т.е. для получения максимума прибыли за оставшиеся годы необходимо в этом году провести замену оборудования.
К началу 4-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 4 = t 3 + 1 = 0 + 1 = 1. Прибыль составит F 4 (1)=20.
Оптимальное управление при k = 4, x 4 (1) = (C), т.е. максимум дохода за годы с 1-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 5-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 5 = t 4 + 1 = 1 + 1 = 2. Прибыль составит F 5 (2)=13.
Оптимальное управление при k = 5, x 5 (2) = (C), т.е. максимум дохода за годы с 2-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 6-го года эксплуатации возраст оборудования увеличится на единицу и составит: t 6 = t 5 + 1 = 2 + 1 = 3. Прибыль составит F 6 (3)=6.
Оптимальное управление при k = 6, x 6 (3) = (C), т.е. максимум дохода за годы с 3-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
F 1 (1) → (C) → F 2 (2) → (C) → F 3 (3) → (З) → F 4 (1) → (C) → F 5 (2) → (C) → F 6 (3) → (C) →
Таким образом, за 6 лет эксплуатации оборудования замену надо произвести в начале 3-го года эксплуатации

Пример №2 . Задача планирования капитальных вложений. Интервал планирования Т=5 лет. Функция затрат на ремонт и дальнейшую эксплуатацию K(t)=t+2t 2 (р.); функция замены P(t)=10+0.05t 2 (р.). Определить оптимальную стратегию замены и ремонта для нового оборудования (t=0) и оборудования возраста t=1, t=2, t=3.
Определить оптимальные планируемые затраты по годам пятилетки, если количество оборудования по возрастным группам следующие: n(t=0)=10, n(t=1)=12, n(t=2)=8, n(t=3)=5

Известно, что оборудова­ние со временем изнашивается, стареет физически и морально. В процес­се эксплуатации, как правило, падает его производительность и растут эксплуатационные расходы на текущий ремонт. Со временем возникает необходимость замены оборудования, так как его дальнейшая эксплуата­ция обходится дороже, чем ремонт. Отсюда задача о замене может быть сформулирована так. В процессе работы оборудование дает ежегодно прибыль, требует эксплуатационных затрат и имеет остаточную стои­мость. Эти характеристики зависят от возраста оборудования. В любом году оборудование можно сохранить, продать по остаточной цене и при­обрести новое. В случае сохранения оборудования возрастают эксплуата­ционные расходы и снижается производительность. При замене нужны значительные дополнительные капитальные вложения. Задача состоит в определении оптимальной стратегии замен в плановом периоде, с тем чтобы суммарная прибыль за этот период была максимальной.

Для количественной формулировки задачи введем следующие обо­значения: r(t) - стоимость продукции, производимой за год на единице оборудования возраста t лет; u(t) - расходы, связанные с эксплуатацией этого оборудования; s(t) - остаточная стоимость оборудования возраста t лет; р - покупная цена оборудования; Т - продолжительность плано­вого периода; t = 0,1, 2,... , Т - номер текущего года.

Решение. Чтобы решить задачу, применим принцип оптимально­сти Р. Беллмана. Рассмотрим интервалы (годы) планового периода в по­следовательности от конца к началу. Введем функцию условно-опти­мальных значений функции цели Fk(t). Эта функция показывает мак­симальную прибыль, получаемую от оборудования возраста t лет за по­следние к лет планового периода. Здесь возраст оборудования рассмат­ривается в направлении естественного хода времени. Например, t = 0 соответствует использованию совершенно нового оборудования. Временные же шаги процесса нумеруются в обратном порядке. Напри­мер, при к = 1 рассматривается последний год планового периода, при к = 2 - последние два года и т. д., при к = Т - последние Т лет, т. е. весь плановый период. Направления изменения t и к показаны на рисунке.

В этой задаче систему составляет оборудование. Ее состояние ха­рактеризуется возрастом. Вектор управления - это решение в момент t = = 0,1, 2,... , Т о сохранении или замене оборудования. Для нахождения оптимальной политики замен следует проанализировать, согласно прин­ципу оптимальности, процесс от конца к началу. Для этого сделаем пред­положение о состоянии оборудования на начало последнего года (k = 1). Пусть оборудование имеет возраст t лет. В начале Т-го года имеются две возможности: 1) сохранить оборудование на Т-й год, тогда прибыль за последний год составит r(t) - u(t); 2) продать оборудование по остаточ­ной стоимости и купить новое, тогда прибыль за последний год будет равна s(t) - р + г(0) - u(0), где г(0) - стоимость продукции, выпущенной на новом оборудовании за первый год его ввода; u(0) - эксплуатацион­ные расходы в этом году. Здесь целесообразно разворачивать процесс от конца к началу. Для последнего года (к = 1) оптималь­ной политикой с точки зрения всего процесса будет политика, обеспе­чивающая максимальную прибыль только за последний год. Учитывая значение прибыли при различном образе действия (замена - сохране­ние), приходим к выводу, что решение о замене оборудования возраста t лет следует принять в случае, когда прибыль от нового оборудования на последнем периоде больше, чем от старого, т.е. при условии


Итак, для последнего, года оптимальная политика и максимальная прибыль F 1 {t) находятся из условия

Пусть к = 2, т. е. рассмотрим прибыль за два последних года. Де­лаем предположение о возможном состоянии t оборудования на начало предпоследнего года. Если в начале этого года принять решение о сохранении оборудования, то к концу года будет получена прибыль r(t) - u(t). На начало последнего года оборудование перейдет в состояние t + 1, и при оптимальной политике в последнем году оно принесет прибыль, равную F 1 (t + 1). Таким образом, общая прибыль за два года составит r(t) - u(t) + F 1 (t + 1). Если же в начале предпоследнего года будет при­нято решение о замене оборудования, то прибыль за предпоследний год составит s(t)-p+r(0)-u(0). Поскольку приобретено новое оборудование, на начало последнего года оно будет в состоянии t = 1. Следовательно, общая прибыль за последние два года при оптимальной политике в по­следнем году составит

Условно-оптимальной в последние два года будет политика, достав­ляющая максимальную прибыль:

Аналогично находим выражения для условно-оптимальной прибыли за три последних года, четыре и т. д. Общее функциональное уравнение примет вид

Таким образом, разворачивая весь процесс от конца к началу, получаем, что максимальная прибыль за плановый период Т составит F T (t 0). Так как начальное состояние to известно, из выражения для F T (t 0) находим оптимальное решение в начале первого года, потом вытекающее оптимальное решение для второго года и т.д. Обратимся к чи­словому примеру.

Разработать оптимальную политику замены оборудования при усло­виях:

1) стоимость r(t) продукции, производимой с использованием обо­рудования за год, и расходы u(t), связанные с эксплуатацией оборудова­ния, заданы таблицей;

2) ликвидационная стоимость машины не зависит от ее возраста и равна 2;

3) цена нового оборудования со временем не меняется и равна 15;

4) продолжительность планового периода 12 лет.

Итак, s(t) = 2, р = 15, Т = 12.

Запишем функциональные уравнения для F 1 (t) и F к (t) при числовых значениях нашего примера:

Пользуясь выражениями (8.9), (8.10), будем последовательно вычис­лять значения максимальной прибыли F к (t) и записывать их в специаль­ную таблицу (табл. 8.4). Первую строку получим, придавая параметру t в равенстве (8.9) значения 0,1,... ,12 и используя исходные данные табл. 8.3. Например, при t = 0

Заметим, что если прибыль от нового оборудования равна прибыли от старого, то старое лучше сохранить еще на год:


Из табл. 8.3 видно, что r(t) – u(t) с ростом t убывает. Поэтому при t > 9 оптимальной будет политика замены оборудования. Чтобы раз­личать, в результате какой политики получается условно-оптимальное значение прибыли, будем эти значения (до t = 9 включительно опти­мальной является политика сохранения) разграничивать жирной лини­ей. Для заполнения второй строки табл. 8.4 используем формулу (8.10). Для к = 2 получаем

Придадим параметру t значения 0,1,2,... ,12, значения r(t) и u(t) возьмем из табл. 8.3, а значения F 1 (t + 1) - из первой строки табл. 8.4. Для третьей строки расчетную формулу получим из равенства (8.10) при к = 3:

и т. д. Заполнив табл. 8.4, данные ее используем для решения постав­ленной задачи. Эта таблица содержит много ценной информации и позволяет решать все семейство задач, в которое мы погружали исходную задачу.

Пусть, например, в начале планового периода имеем оборудование возраста 6 лет. Разработаем "политику замен" на двенадцатилетний пе­риод, доставляющую максимальную прибыль. Информация для этого имеется в табл. 8.4. Максимальная прибыль, которую можно получить за 12 лет при условии, что вначале имелось оборудование возраста 6 лет, находится в табл. 8.4 на пересечении столбца t = 6 и строки F12(t); она составляет 180 единиц.

Значение максимальной прибыли F12(6) = 180 записано справа от ломаной линии, т.е. в области "политики замены". Это значит, что для достижения в течение 12 лет максимальной прибыли в начале первого года оборудование надо заменить. В течение первого года новое обору­дование постареет на год, т.е., заменив оборудование и проработав на нем 1 год, мы за 11 лет до конца планового периода будем иметь обо­рудование возраста 1 год. Из табл. 8.4 берем F11(l) = 173. Это значе­ние располагается в области "политики сохранения", т. е. во втором году планового периода надо сохранить оборудование возраста 1 год, и, про­работав на нем год, за 10 лет до конца планового периода будем иметь оборудование возраста 2 года.

Выясняем, что значение F10(2) = 153 помещено в области сохра­нения. Работаем на оборудовании еще год. Теперь до конца планового периода осталось 9 лет, а возраст оборудования составляет 3 года. Нахо­дим F9(3) = 136. Это область сохранения. Работаем на оборудовании еще год. Его возраст становится равным 4 годам. До конца планового перио­да остается 8 лет. Определяем F8(4) = 120. Это область замен. Заменяем оборудование на новое. Проработаем на нем в течение четвертого года. Оно постареет на год. До конца планового периода останется 7 лет. На­ходим F7(l) = 113. Это область сохранения. Продолжив подобные рассу­ждения, установим, что F6(2) = 93, F5(3) = 76 расположены в области сохранения, F4(4)=60 - в области замен, F3(l) = 53, F2(2) = 33, F1(3) = 16 - в области сохранения. Разработанную политику изобразим следующей цепочкой:

Таким образом, вместо поиска оптимальной "политики замен" на плановый период в 12 лет мы погрузили исходную задачу в семейство подобных, когда период меняется от 1 до 12. Решение ведется по прин­ципу оптимальности для любого состояния системы, независимо от ее предыстории. Оптимальная "политика замен" является оптимальной на оставшееся число лет. Табл. 8.4 содержит информацию для решения и других задач. Из нее можно найти оптимальную стратегию замены оборудования с лю­бым начальным состоянием от 0 до 12 лет и на любой плановый период, не превосходящий 12 лет. Например, найдем "политику замен" на пла­новый период в 10 лет, если вначале имелось оборудование пятилетнего возраста:

Задачу о замене оборудования мы упростили. На практике же дета­лями не пренебрегают. Легко учесть, например, случай, когда остаточная стоимость оборудования s(t) зависит от времени. Может быть принято решение о замене оборудования не новым, а уже проработавшим некото­рое время. Не составляет также труда учесть возможность капитального ремонта старого оборудования. При этом в понятие "состояние" системы необходимо включить время последнего ремонта оборудования. Функция Fk(ti,t2) выражает прибыль за последние к лет планового периода при условии, что вначале имелось оборудование возраста t1, прошедшее ка­питальный ремонт после t2 лет службы. Характеристики г, s и и также будут функциями двух переменных t1 и t2.

Замена оборудования – важная экономическая проблема. Задача состоит в определении оптимальных сроков замены старого оборудования (станков, производственных зданий и т.п.). Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты, затраты на ремонт и обслуживание, снижаются производительность труда, ликвидная стоимость. Критерием оптимальности являются, как правило, либо прибыль от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Основная характеристика оборудования – параметр состояния – его возраст t.

При составлении динамической модели замены процесс замены рассматривают как "-шаговый, разбивая весь период эксплуатации на п шагов. Возможное управление на каждом шаге характеризуется качественными признаками, например X е (сохранить оборудование), X" (заменить) и Хр (сделать ремонт).

Рассмотрим конкретный пример.

11.3. Оборудование эксплуатируется в течение 5 лет, после этого продается. В начале каждого года можно принять решение – сохранить оборудование или заменить его новым. Стоимость нового оборудования р 0 = 4000 руб . После t лет эксплуатации (1 < t < 5) оборудование можно продать за g(t) = р 0 T" руб. (ликвидная стоимость). Затраты на содержание в течение года зависят от возраста t оборудования и равны r(i) = 600(i + l). Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты с учетом начальной покупки и заключительной продажи были минимальны.

Решение. Способ деления управления на шаги, естественный, по годам, п = 5. Параметр состояния – возраст машины – s k_ t =t, s Q= 0 – машина новая в начале 1-го года эксплуатации. Управление на каждом шаге зависит от двух переменных X е и Х

Уравнения состояний зависят от управления:

(11.22)

В самом деле, если к /г-му шагу s k_ { =t, то при сохранении машины к = X е) через год возраст машины увеличится на 1. Если машина заменяется новой к = Х"), то это означает, что к началу ⅞-ro шага ее возраст t = 0, а после года эксплуатации ¢=1, т.е. s k = 1.

Показатель эффективности ⅛-го шага:

(11.23)

При X е затраты только на эксплуатацию машины возраста i, при X 1 машина продается (-4000-2"" J, покупается новая (4000) и эксплуатируется в течение первого года (600), общие затраты равны (-4000 ∙ 2"" + 4000 + 600).

Пусть– условные оптимальные затраты на экс

плуатацию машины начиная с А-го шага до конца при условии, что к началу А-го шага машина имеет возраст t лет. Запишем для функцийуравнения Веллмана (11.5) и (11.8), заменив задачу максимизации на задачу минимизации:

(11.24)

Величина– стоимость машины возраста

t лет (по условию машина после 5 лет эксплуатации продается).

(11.25)

Из определения функцийследует

Дадим геометрическое решение этой задачи. Па оси абсцисс будем откладывать номер шага А, на оси ординат – возраст t машины. Точка (А – 1, ί) на плоскости соответствует началу А-го года эксплуатации машины возраста t лет. Перемещение па графике в зависимости от принятого управления на А-м шаге показано на рис. 11.7.

Состояние начала эксплуатации машины соответствует точке , конец – точкам s(6; t). Любая траектория, переводящая точкуизв, состоит из отрезков-шагов, соответствующих годам эксплуатации. Надо выбрать такую траекторию, при которой затраты на эксплуатацию машины окажутся минимальными.

Рис. 11.7

Над каждым отрезком, соединяющим точки -1; /) и [к, ¢ + 1), запишем соответствующие управлению Xе затраты, найденные из (11.23): 600(ί + ΐ), а над отрезком, соединяющим точки (k- ; ¢) и [к; г), запишем затраты, соответствующие управлению X 3, т.е. 4600-4000 2_ί. Таким образом мы разметим все отрезки, соединяющие точки на графике, соответствующие переходам из любого состояния s k_ i в состояние s k (рис. 11.8). Например, над отрезками, соединяющими точки (к; 2) и (/г+1; 3), стоит число 1800 , что соответствует затратам на эксплуатацию в течение каждого года машины возраста t = 2 года, а над отрезками, соединяющими (к, 2) и (£+1; 1), стоит число 3600 – это сумма затрат на покупку машины и эксплуатацию новой машины в течение года без "затрат" (выручки) за проданную машину возраста t лет. Следует учесть, что 0 < t < к.

Проведем на размеченном графе состояний (см. рис. 11.8) условную оптимизацию.

V шаг. Начальные состояния – точки (4; ¢), конечные – (5; ¢). В состояниях (5; ¢) машина продается, условный оптимальный доход от продажи равен 4000 2_ί, но поскольку целевая функция связана с затратами, то в кружках точек (5; ¢) поставим величину дохода со знаком минус.

Анализируем, как можно попасть из каждого начального состояния в конечное на V шаге.

Состояние (4; 1). Из него можно попасть в состояние (5; 2), затратив на эксплуатацию машины 1200 и выручив затем от продажи 1000, т.е. суммарные затраты равны 200, и в состояние (5; 1) с затратами 2600 – 2000 = 600. Значит, если к последнему шагу система находилась в точке (4; 1), то следует идти в точку (5; 2) (укажем это направление двойной стрелкой), а неизбежные минимальные затраты, соответствующие этому переходу, равны 200 (поместим эту величину Zg (1) = 200 в кружке точки (4; 1)).

Состояние (4; 2). Из него можно попасть в точку (5; 3) с затратами 1800 – 500 = 1300 и в точку (5; 1) с затратами 3600 – 2000 = 1600. Выбираем первое управление, отмечаем его двойной стрелкой, a Zg(2) = 1300 проставляем в кружке точки (4; 2).

Рассуждая таким же образом для каждой точки предпоследнею шага, мы найдем для любого исхода IV шага оптимальное управление на V шаге, отметим его на рис. 11.8 двойной

Рис. 11.8

стрелкой. Далее планируем IV шаг, анализируя каждое состояние, в котором может оказаться система в конце III шага с учетом оптимального продолжения до конца процесса, т.е. решаем для всех 0 < t < 4 при k = 4 уравнения (11.22). Например, если начало IV шага соответствует состоянию (3; 1), то при управлении X е система переходит в точку (4; 2), затраты на этом шаге 1200, а суммарные затраты за два последних шага равны 1200 + 1300 = 2500. При управлении X" затраты за два шага равны 2600 + 200 = 2800. Выбираем минимальные затраты 2500, ставим их в кружок точки (3; 1) а соответствующие управления на этом шаге помечаем двойной стрелкой, ведущей из состояния (3; 1), в состояние (4; 2). Так поступаем для каждого состояния (3; t) (см. рис. 11.8).

Продолжая условную оптимизацию III, II и I шагов, мы получим на рис. 11.8 такую ситуацию: из каждой точки (состояния) выходит стрелка, указывающая, куда следует перемещаться в данном шаге, если система оказалась в этой точке, а в кружках записаны минимальные затраты на переход из этой точки в конечное состояние. На каждом шаге графически решались уравнения (11.22).

После проведения условной оптимизации получим в точке (0; 0) минимальные затраты на эксплуатацию машины в течение 5 лет с последующей продажей: Zmin =11900. Далее строим оптимальную траекторию, перемещаясь из точки s0(0; 0) по двойным стрелкам в.?. Получаем набор точек:

{(0; 0),(1;1), (2; 2),(3:1), (4; 2), (5; 3)},

который соответствует оптимальному управлению Х*(ХС, Xе, Х X е, X е). Оптимальный режим эксплуатации состоит в том, чтобы заменить машину новой в начале 3-го года.

Таким образом, размеченный график (сеть) позволяет наглядно интерпретировать расчетную схему и решить задачу методом ДП.

Как уже отмечалось, модели и вычислительная схема ДП очень гибки в смысле возможностей включения в модель различных модификаций задачи. Например, аналогичная задача может быть рассмотрена для большого числа вариантов управления, "ремонт", "капитальный ремонт" и т.д. Можно рассматривать замену оборудования новым с учетом технического прогресса, можно учесть изменения в затратах на эксплуатацию оборудования после его ремонта, в зависимости от года эксплуатации (дороже, дешевле). Все эти факторы можно учитывать вычислительной схемой ДП.

  • Все цены условные.
  • Напоминаем, что псе затраты выражены в условных рублях.


Статьи по теме: