Электрогенератор из однофазного электродвигателя. Генератор в асинхронный двигатель: как переделывать

Асинхронным (индукционным) генератором называется электротехническое изделие, работающее на переменном токе и обладающее способностью воспроизводить электрическую энергию. Отличительной чертой является высокая частота вращения ротора.

Данный параметр значительно выше, чем у синхронного аналога. Работа асинхронной машины базируется на её способности преобразовывать энергию механического типа в электроэнергию. Допустимое напряжение – 220В или 380В.

Области применения

Сегодня сфера применения асинхронных устройств довольно широкая. Их применяют:

  • в транспортной промышленности (система торможения);
  • в сельхозработах (агрегаты, не требующие мощностной компенсации);
  • в быту (моторы автономных водяных или ветровых электростанций);
  • для сварочных работ;
  • чтобы обеспечить бесперебойное питание наиболее важной техники, например медицинских холодильников.


В теории вполне допустимо переоборудовать в генератор асинхронного типа асинхронный двигатель. Чтобы это осуществить, нужно:

  • иметь чёткое понятие об электрическом токе;
  • тщательно изучить физику получения электроэнергии из энергии механической;
  • обеспечить требуемые условия для возникновения тока на статорной обмотке.

Специфика устройства и принцип действия

Основные элементы устройства асинхронных генераторов – это ротор и статор. Ротор представляет собой короткозамкнутую деталь, при вращении которой образуется электродвижущая сила. Для изготовления токопроводящих поверхностей используют алюминий. Статор оборудован трёхфазной или однофазной обмоткой, размещённой в форме звезды.

Как показано на фото генератора асинхронного типа, другими составляющими являются:

  • ввод кабеля (по нему выводится электрический ток);
  • температурный датчик (нужен, чтобы отслеживать нагрев обмотки);
  • фланцы (назначение – более плотное соединение элементов);
  • контактные кольца (не связаны друг с другом);
  • регулирующие щётки (они запускают реостат, позволяющий регулировать роторное сопротивление);
  • короткозамыкательное устройство (используется, если надо принудительно остановить реостат).

В основе принципа работы асинхронных генераторов лежит переработка энергии механического типа в электрическую. Движение лопаток ротора приводит к возникновению электротока на его поверхности.

В результате образуется магнитное поле, наводящее на статор одно- и трёхфазное напряжение. Регулировать вырабатываемую энергию можно посредством изменения нагрузки на статорные обмотки.

Особенности схемы

Схема генератора из асинхронного двигателя довольно простая. Она не требует особенных навыков. При запуске разработки без подключения к электросети начнётся вращение. Выйдя на соответствующую частоту, обмотка статора начнёт вырабатывать ток.


Если установить отдельную батарею из нескольких конденсаторов, то результатом подобной манипуляции станет опережающий емкостный ток.

На параметры создаваемой энергии оказывают влияние технические характеристики генератора и емкость используемых конденсаторов.

Виды асинхронных моторов

Принято выделять следующие виды асинхронных генераторов:

С короткозамкнутым ротором. Устройство подобного типа состоит из стационарного статора и вращающегося ротора. Сердечники – стальные. В пазах сердечника статора размещён изолированный провод. В пазах сердечника ротора установлена стержневая обмотка. Обмотку ротора замыкают особые кольца-перемычки.

С фазным ротором. Такое изделие имеет достаточно высокую стоимость. Требует специализированное обслуживание. Конструкция аналогична конструкции генератора с ротором короткозамкнутого типа. Отличие заключается в использовании изолированного провода в качестве обмоток.

Концы обмотки прикреплены к размещённым на валу специальным кольцам. По ним проходят щётки, объединяющие провод с реостатом. Генератор асинхронного типа с фазным ротором менее надёжен.

Преобразуем двигатель в генератор

Как говорилось ранее, допустимо использовать асинхронный двигатель в качестве генератора. Рассмотрим небольшой мастер-класс.


Вам потребуется двигатель от обычной стиральной машинки.

  • Сделаем меньше толщину сердечника и проделаем несколько несквозных отверстий.
  • Вырежем из листовой стали полосу, размер которой равен размеру ротора.
  • Займёмся монтажом неодимовых магнитов (не меньше 8 шт.). Закрепим их клеем.
  • Закроем ротор при помощи листа плотной бумаги и закрепим края липкой лентой.
  • Роторный торец промажем мастичным составом в целях герметизации.
  • Свободное место между магнитами заполним смолой.
  • После того, как эпоксидка застынет, бумажный слой убираем.
  • Отшлифовываем ротор при помощи наждачной бумаги.
  • При помощи двух проводков подсоединяем устройство к рабочей обмотке, убираем ненужные проводники.
  • При желании заменяем подшипники.

Устанавливаем выпрямитель тока и монтируем контроллер зарядки. Наш генератор из асинхронного двигателя своими руками готов!

Более подробную инструкцию как сделать генератор асинхронного типа можно найти в Интернете.

  • Обеспечьте генератору защиту от механических повреждений и осадков.
  • Изготовьте особый защитный корпус под собранную машину.
  • Помните о необходимости регулярного отслеживания параметров генератора.
  • Не забудьте заземлить агрегат.
  • Не допускайте перегрева.

Фото асинхронны генераторов

Бесперебойное обеспечение электроэнергией – это залог комфортной жизни в любое время года.

Для организации автономного питания жилища часто используется асинхронный генератор, который также можно сделать своими руками.

Что это такое

Асинхронный генератор – это устройство переменного тока, который при помощи принципа работы асинхронного двигателя, может производить электрическую энергию. Его еще называют индукционным. Асинхронный электрогенератор обеспечивает быстрый поворот ротора, скорость вращения при этом намного больше, чем, если бы их вращал синхронный аналог устройства. Обычный асинхронный электродвигатель переменного тока может использоваться как генератор без каких-то дополнительных настроек или преобразований схемы.

Фото – асинхронный генератор

Область использования асинхронного генератора довольно широкая:

  1. Их применяют как двигатели для ветровых электростанций;
  2. С целью обеспечения автономного питания дома или квартиры, или как миниатюрные ГЭС-станции;
  3. Как инверторный (сварочный) генератор;
  4. Для организации бесперебойного питания от переменного тока.

При этом однофазный асинхронный генератор должен быть включен при помощи входящего напряжения. Обычно для этого устройство подключают к питанию. Но некоторые модели могут работать самостоятельно, самовозбуждением, посредством последовательного подключения конденсаторов.
Видео: устройство асинхронного двигателя

Принцип работы

Асинхронный электрический генератор производит электрическую энергию, когда скорость вращения ротора быстрее, чем синхронная. У самого обычного генератора этот показатель находится в пределах 1800 оборотов в минуту, при этом характеристики синхронной скорости около 1500 об/мин.


Схема генератора

Принцип работы асинхронного генератора основан на преобразовании механической энергии в энергию тока, т. е., электрическую. Для того чтобы ротор начал крутиться и вырабатывать ток, нужен довольно сильный крутящий момент. Идеальным, по мнению электриков, считается так называемый «вечный холостой ход», при котором поддерживается равная скорость вращения на протяжении всей работы асинхронного генератора.

Как сделать самому

Купить асинхронный генератор – это дорогое удовольствие, тем более что можно его сделать самостоятельно. Принцип работы прост, главное – обеспечить себя необходимыми инструментами.

  1. Согласно принципу действия устройства, Вам нужно настроить генератор так, чтобы скорость его вращения была выше, чем обороты двигателя. Для этого подключаем электродвигатель к сети и заводим его. Чтобы вычислить скорость вращения двигателя, нужно использовать тахогенератор или тахометр;
  2. К полученному значению нужно добавить 10 %. Скажем, технические характеристики двигателя 1200 об/мин, значит, генератор должен иметь 1320 об/мин (1200 * 0,1 % = 120, 120 + 1200 = 1320 об/мин);
  3. Далее, переделка асинхронного двигателя в генератор включает в себя подбор необходимой емкости для используемых конденсаторов (каждый конденсатор между фазами аналогичен предыдущему);
  4. Следите за тем, чтоб емкость не была слишком большой, иначе асинхронный генератор будет нагреваться;
  5. Подбираете конденсаторы, необходимые для обеспечения определенной скорость вращения, расчет которой производился выше. Их установка требует особенной внимательности, очень важно, чтобы они были изолированы при помощи специальных покрытий.

На этом обустройство генератора на базе двигателя окончено. Теперь его можно устанавливать как источник энергии. Важно помнить, что устройство с короткозамкнутым ротором производит довольно высокое напряжение, поэтому если Вам нужен показатель 220 В, есть резон установить понижающий трансформатор.


Схема включения двигателя в качестве генератора

Вот так выглядит схема, как сделать ветрогенератор из асинхронного двигателя, здесь основные отличия заключаются в скорости вращения и в принципе включения. Как пример, представляем Вам схему ветряной ГЭС, которую включает асинхронный бензиновый генератор.

При этом нужно отметить, что он не работает с самозапиткой, в большинстве случаев, для включения такого генератора используется специальный мотоблок или блок управления по типу замка зажигания.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

Часть 3

Часть 4

Часть 5

Часть 6

В качестве генератора с небольшой мощностью, можно применять даже однофазные асинхронные двигатели от бытовых электроприборов – стиральных машин Geko, дренажных насосов и т. д. Как и двухопорный двигатель, мотор от таких устройств нужно подключать параллельно их обмотке. Еще один способ – это использовать конденсаторы сдвига фазы. Они не всегда отличаются нужной мощностью, поэтому нужно будет её увеличить до необходимых показателей. Такой простой генератор можно будет использовать для питания лампочек или модемов. Если немного переделать схему, то Вам удастся подключить этот автономный прибор даже к обогревателю или электрической печке. Также можно сделать подобный генератор на постоянных магнитах.


Фото – маломощный генератор
  1. Любой асинхронный генератор (бензогенератор, электрический, бесщеточный) считается устройством с повышенный уровнем опасности, поэтому постарайтесь его изолировать;
  2. Каждый автономный генератор обязательно должен быть оснащен дополнительными измерительными устройствами, чтобы фиксировать данные о его работе. Это должен быть частотометр или тахометр, а также вольтметр;
  3. Желательно обустроить генератор кнопками включения и выключения;
  4. Данный тип электрогенератора, в обязательном порядке, заземляется;
  5. Будьте готовы к тому, что КПД асинхронного генератора будет падать на 30, а иногда и на 50 % – это явление неизбежно при преобразовании механической энергии в электрическую;
  6. Заменить устройство при необходимости могут синхронные бесщеточные генераторы типа ГС-200 или ГС-250, асинхронные АИР 63, ЕСС 5-93-4у2 (75 кВт), и прочие, цена которых от 30 000 рублей в Красноярске и от 35 000 в Москве;
  7. Очень важен тепловой режим асинхронного генератора. Как и ДВС он может нагреваться от холостого хода, следите за температурой устройства.

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с , ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря.

Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.

Тем, кто хочет заняться переделкой в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой . Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.

Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.

Использование высокомощных моторов в домашних условиях при наличии исключительно однофазной сети требует определенных знаний в том, .

Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать .

На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в не годятся.

Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.

На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.


Во многих теоретических изданиях главным преимуществом асинхронных представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки.

Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>

Почему мы используем Асинхронный Электрогенератор

Асинхронный генератор - это работающая в генераторном режиме асинхронная электрическая машина (ел.двигатель). При помощи приводного двигателя (в нашем случае ватродвигателя) ротор асинхронного электрогенератора вращается в одном направлении с магнитным полем. Скольжение ротора при этом становится отрицательным, на валу асинхронной машины появляется тормозящий момент, и генератор передает энергию в сеть.

Для возбуждения электродвижущей силы в его выходной цепи используют остаточную намагниченность ротора. Для этого применяются конденсаторы.

Асинхронные генераторы не восприимчивы к коротким замыканиям.

Асинхронный генератор устроен проще синхронного (например автомобильного генератора): если у последнего на роторе помещаются катушки индуктивности, то ротор асинхронного генератора похож на обычный маховик. Такой генератор лучше защищен от попадания грязи и влаги, более устойчив к короткому замыканию и перегрузкам, а выходное напряжение асинхронного электрогенератора отличается меньшей степенью нелинейных искажений. Это позволяет использовать асинхронные генераторы не только для питания промышленных устройств, которые не критичны к форме входного напряжения, но подключать электронную технику.

Именно асинхронный электрогенератор является идеальным источником тока для приборов, имеющих активную (омическую) нагрузку: электронагревателей, сварочных преобразователей, ламп накаливания, электронных устройств, компьютерную и радиотехнику.

Преимущества асинхронного генератора

К таким преимуществам относят низкий клирфактор (коэффициент гармоник), характеризующий количественное наличие в выходном напряжении генератора высших гармоник. Высшие гармоники вызывают неравномерность вращения и бесполезный нагрев электромоторов. У синхронных генераторов может наблюдаться величина клирфактора до 15%, а клирфактор асинхронного электрогенератора не превышает 2%. Таким образом, асинхронный электрогенератор вырабатывает практически только полезную энергию.

Еще одним преимуществом асинхронного электрогенератора является то, что в нем полностью отсутствуют вращающиеся обмотки и электронные детали, которые чувствительны к внешним воздействиям и довольно часто подвержены повреждениям. Поэтому асинхронный генератор мало подвержен износу и может служить очень долго.

На выходе наших генераторов идет сразу 220/380В переменного тока, который можно использовать напрямую к бытовым приборам (например обогреватели), для зарядки аккумуляторов, для подключения к пилораме, а также для параллельной работы с традиционной сетью. В этом случае Вы будете оплачивать разницу потребленной из сети и сгенерированной ветряком. Т.к. напряжение идет сразу промышленных параметров, то Вам не понадобятся различные преобразователи (инверторы) при прямом включении ветрогенератора к Вашей нагрузке. Например Вы можете напрямую подключить к пилораме и при наличии ветра — работать так, как если бы Вы просто подключились к сети 380В.

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>n1, то движение ротора относительно поля статора изменится (по сравнению с двигательным режимом этой машины), так как ротор будет обгонять поле статора.

При этом скольжение станет отрицательным, а направление э.д.с. Е1, наведенной в обмотке статора, а следовательно, и направление тока I1 изменятся на противоположное. В результате электромагнитный момент на роторе также изменит направление и из вращающего (в двигательном режиме) превратится в противодействующий (по отношению к вращающему моменту первичного двигателя). В этих условиях асинхронная машина из двигательного перейдет в генераторный режим, преобразуя механическую энергию первичного двигателя в электрическую. При генераторном режиме асинхронной машины скольжение может изменяться в диапазоне

при этом частота э.д.с. асинхронного генератора остается неизменной, так как она определяется скоростью вращения поля статора, т.е. остается такой же, что и частота тока в сети, на которую включен асинхронный генератор.

Ввиду того, что в генераторном режиме асинхронной машины условия создания вращающегося поля статора такие же, что и в двигательном режиме (и в том и в другом режимах обмотка статора включена в сеть с напряжением U1), и потребляет из сети намагничивающий ток I0, то асинхронная машина в генераторном режиме обладает особыми свойствами: она потребляет реактивную энергию из сети, необходимую для создания вращающегося поля статора, но отдает в сеть активную энергию, получаемую в результате преобразования механической энергии первичного двигателя.

В отличие от синхронных асинхронные генераторы не подвержены опасностям выпадения из синхронизма. Однако асинхронные генераторы не получили широкого распространения, что объясняется рядом их недостатков по сравнению с синхронными генераторами.

Асинхронный генератор может работать и в автономных условиях, т.е. без включения в общую сеть. Но в этом случае для получения реактивной мощности, необходимой для намагничивания генератора, используется батарея конденсаторов, включенных параллельно нагрузке на выводы генератора.

Непременным условием такой работы асинхронных генераторов является наличие остаточного намагничивания стали ротора, что необходимо для процесса самовозбуждения генератора. Небольшая э.д.с. Еост, наведенная в обмотке статора, создает в цепи конденсаторов, а следовательно, и в обмотке статора небольшой реактивный ток, усиливающий остаточный поток Фост. В дальнейшем процесс самовозбуждения развивается, как и в генераторе постоянного тока параллельного возбуждения. Изменением емкости конденсаторов можно изменять величину намагничивающего тока, а следовательно, и величину напряжения генераторов. Из-за чрезмерной громоздкости и высокой стоимости конденсаторных батарей асинхронные генераторы с самовозбуждением не получили распространения. Асинхронные генераторы применяются лишь на электростанциях вспомогательного значения малой мощности, например в ветросиловых установках.

Генератор своими руками

В моей электростанции источником тока является асинхронный генератор, приводимый в движение бензиновым двухцилиндровым двигателем с воздушным охлаждением УД-25 (8 л.с., 3000 об/мин.). В качестве асинхронного генератора без каких-либо переделок можно использовать обычный асинхронный электродвигатель с частотой вращения 750-1500 об/мин и мощностью до 15 кВт.

Частота вращения асинхронного генератора в нормальном режиме должна превышать номинальное (синхронное) значение числа оборотов используемого электродвигателя на 10%. Сделать это можно следующим образом. Электродвигатель включается в сеть и частота вращения в холостом режиме замеряется тахометром. Ременная передача от двигателя к генератору рассчитывается таким образом, чтобы обеспечить несколько повышенное число оборотов генератора. Например, электродвигатель с номинальной частотой вращения, равной 900 об/мин, вхолостую дает 1230 об/мин. В этом случае ременная передача рассчитывается на обеспечение частоты вращения генератора, равной 1353 об/мин.

Обмотки асинхронного генератора в моей установке соединены «звездой» и вырабатывают трехфазное напряжение 380 В. Для поддержания номинального напряжения асинхронного генератора необходимо правильно подобрать емкость конденсаторов между каждой фазой (все три емкости одинаковы). Для подбора нужной емкости я пользовался следующей таблицей. До приобретения необходимого навыка в работе можно проверять нагрев генератора на ощупь во избежание перегрева. Нагрев указывает на то, что подключена слишком большая емкость.

Конденсаторы пригодны типа КБГ-МН или другие с рабочим напряжением не менее 400 В. При выключении генератора на конденсаторах остается электрический заряд, поэтому необходимо принимать меры предосторожности от поражения электрическим током. Конденсаторы следует надежно оградить.

При работе с ручным электроинструментом на 220 В я пользуюсь понижающим трансформатором ТСЗИ с 380 В на 220 В. При подключении к электростанции трехфазного двигателя может случиться, что генератор не «осилит» с первого раза его запуск. Тогда следует дать серию кратковременных включений двигателя, пока он не наберет обороты, или раскрутить вручную.

Стационарные асинхронные генераторы такого рода, используемые для электрообогрева жилого дома, можно приводить в движение ветряным двигателем или турбиной, установленной на небольшой речке или ручье, если таковые есть недалеко от дома. В свое время в Чувашии заводом «Энергозапчасть» выпускался генератор (микро-ГЭС) мощностью 1,5 кВт на базе асинхронного электродвигателя. В. П. Бельтюков из г. Нолинска сделал ветроустановку и в качестве генератора также использовал асинхронный двигатель. Такой генератор можно приводить в движение, используя мотоблок, минитрактор, двигатель мотороллера, автомобиля и т.д.

Свою электростанцию я установил на небольшом легком одноосном прицепе — раме. Для работ вне хозяйства загружаю в машину необходимый электроинструмент и прицепляю к ней свою установку. С роторной сенокосилкой кошу сено, электротягачом пашу землю, бороную, сажаю, окучиваю. Для таких работ в комплекте со станцией вожу катушку с четырехжильным кабелем КРПТ. При намотке кабеля стоит учитывать один момент. Если наматывать обычным способом, то образуется соленоид, в котором будут дополнительные потери. Чтобы их избежать, кабель нужно сложить пополам и наматывать на катушку, начиная с места сгиба.

Глубокой осенью приходится заготавливать дрова на зиму из валежника. Пользуюсь при этом опять-таки электроинструментом. На дачном участке с помощью циркулярной пилы и строгального станка выполняю обработку материала для плотничных работ.

В результате длительного испытания работы нашего Парусного ветрогенератора с традиционной схемой возбуждения асинхронного двигателя (АД), основанной на применении в качестве коммутатора магнитного пускателя выявился целый ряд недостатков, который и привел созданию Шкафа Управления. Который стал универсальным устройством для превращения любого Асинхронного двигателя в Генератор! Теперь достаточно подключить провода от АД двигателя в наше устройство управления и генератор готов.

Как превратить любой Асинхронный Двигатель в генератор - Дом без фундамента


Как превратить любой Асинхронный Двигатель в генератор — Дом без фундамента Почему мы используем Асинхронный Электрогенератор Асинхронный генератор - это работающая в генераторном режиме

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.

В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.

Три отдельные обмотки статора могут быть соединены на заводе по схеме:

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.

В отдельных случаях может выполняться подключение проводов и кабеля другими способами.

К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.

Эти величины удобно выражать в векторной форме.

Особенности конструкции роторов

Двигатели с фазным ротором

Их снабжают обмоткой, выполненной по образцу статорной, а выводы от каждой соединяют с контактными кольцами, которые обеспечивают электрический контакт со схемой запуска и регулировки через прижимные щетки.

Такая конструкция довольно сложная в изготовлении, дорогая по стоимости. Она требует периодического наблюдения за работой и квалифицированного обслуживания. По этим причинам для самодельного генератора применять ее в таком исполнении нет смысла.

Однако, если имеется подобный двигатель и ему нет другого применения, то можно выводы каждой обмотки (те концы, которые подключаются к кольцам) закоротить между собой. Таким способом фазный ротор превратится в короткозамкнутый. Его можно подключать по любой рассматриваемой ниже схеме.

Двигатели с короткозамкнутым ротором

Внутри пазов магнитопровода ротора залит алюминий. Обмотка выполнена в виде вращающейся беличьей клетки (за что и получила такое дополнительное название) с замкнутыми накоротко по концам кольцами-перемычками.

Это самая простая схема двигателя, которая лишена подвижных контактов. За счет этого она длительно работает без вмешательства электриков, отличается повышенной надежностью. Ее и рекомендуется применять для создания самодельного генератора.

Обозначения на корпусе двигателя

Чтобы самодельный генератор надежно работал необходимо обращать внимание на:

  • класс IP, характеризующий качество защиты корпуса от воздействий внешней среды;
  • мощность потребления;
  • число оборотов;
  • схему соединения обмоток;
  • допустимые токи нагрузок;
  • КПД и косинус φ.

Схему соединения обмоток, особенно у старых двигателей, бывших в работе, следует вызвонить, проверить электрическими методами. Эта технология подробно расписана в статье о подключении трехфазного двигателя в однофазную сеть.

Принцип работы асинхронного двигателя в качестве генератора

В основу его воплощения заложен метод обратимости электрической машины. Если у отключенного от напряжения сети двигателя начать принудительно вращать ротор с расчетной скоростью, то в обмотке статора будет наводиться ЭДС за счет наличия остаточной энергии магнитного поля.

Остается только подключить к обмоткам конденсаторную батарею соответствующего номинала и по ним станет протекать емкостной опережающий ток, имеющий характер намагничивающего.

Чтобы происходило самовозбуждение генератора, а на обмотках формировалась симметричная система трехфазных напряжений, необходимо подобрать емкость конденсаторов, большую определенной, критической величины. Кроме ее значения на выходную мощность, естественно, влияет конструкция двигателя.

Для нормальной выработки трехфазной энергии с частотой 50 Гц необходимо поддерживать скорость вращения ротора, превышающую асинхронную составляющую на величину скольжения S, которая лежит в пределах S=2÷10%. Ее требуется поддерживать на уровне синхронной частоты.

Отход синусоиды от стандартного значения по частоте отрицательно повлияет на работу оборудования с электрическими двигателями: пилами, рубанками, различными станками и трансформаторами. На резистивных нагрузках с ТЭН и лампами накаливания это практически не сказывается.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями.

На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то - 220.

Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Как рассчитать характеристики генератора по мощности двигателя и емкости конденсаторов

Для создания нормальных условий работы электрической машины необходимо соблюсти равенство ее номинального напряжения и мощности в режимах генератора и электродвигателя.

С этой целью подбирают емкость конденсаторов с учетом вырабатываемой ими реактивной мощности Q при различных нагрузках. Ее величину рассчитывают по выражению:

Из этой формулы, зная мощность двигателя, для обеспечения полной нагрузки можно рассчитать емкость батареи конденсаторов:

Однако, следует учесть режим работы генератора. На холостом ходу конденсаторы станут излишне нагружать обмотки и нагревать их. Это приводит к большим потерям энергии, перегреву конструкции.

Для устранения подобного явления конденсаторы подключают ступенчато, определяя их количество в зависимости от приложенной нагрузки. Чтобы упростить подбор конденсаторов для запуска асинхронного двигателя в режиме генератора, создана специальная таблица.

Для использования в составе емкостной батареи хорошо подходят пусковые конденсаторы серии K78-17 и им подобные с рабочим напряжением от 400 вольт и больше. Вполне допустимо заменить их металлобумажными аналогами с соответствующими номиналами. Собирать их придется параллельным подключением.

Использовать модели электролитических конденсаторов для работы в цепях асинхронного самодельного генератора не стоит. Они предназначены для цепей постоянного тока, а при прохождении синусоиды, меняющейся по направлению, быстро выходят из строя.

Существует специальная схема их подключения для подобных целей, когда каждая полуволна направляется диодами на свою сборку. Но она довольно сложная.

Конструктивное исполнение

Автономное устройство электростанции должно в полной мере обеспечивать требования безопасной эксплуатации работающего оборудования и выполняться единым модулем, включающим навесной электрощит с приборами:

  • измерения - вольтметром до 500 вольт и частотомером;
  • коммутации нагрузок - три выключателя (один общий подает напряжение от генератора на схему потребителей, а два остальных осуществляют подключения конденсаторов);
  • защит - автоматическим выключателем, устраняющим последствия возникновения коротких замыканий или перегрузок и УЗО (устройство защитного отключения), спасающее работников от пробоя изоляции и попадания потенциала фазы на корпус.

Резервирование основной схемы питания

Создавая самодельный генератор необходимо предусмотреть его совместимость со схемой заземления рабочего оборудования, а при автономной работе – надежно подключать к контуру земли.

Если электростанция создается для резервного питания приборов, работающих от государственной сети, то использовать ее следует при отключении напряжения с линии, а при восстановлении - останавливать. С этой целью достаточно установить рубильник, управляющий всеми фазами одновременно или подключить сложную систему автоматики включения резервного питания.

Выбор напряжения

Схема на 380 вольт обладает повышенной опасностью поражения человека. Ее используют в крайних случаях, когда фазной величиной на 220 обойтись нет возможности.

Перегрузки генератора

Такие режимы создают излишний нагрев обмоток с последующим разрушением изоляции. Они возникают при превышении токов, проходящих по обмоткам из-за:

  1. неправильного подбора емкости конденсаторов;
  2. подключения потребителей повышенной мощности.

В первом случае необходимо тщательно следить за тепловым режимом во время холостого хода. При излишнем нагреве требуется корректировать емкость конденсаторов.

Особенности подключения потребителей

Общая мощность трехфазного генератора состоит из трех частей, вырабатываемых в каждой фазе, которая составляет 1/3 от общей. Ток, проходящий по одной обмотке, не должен превышать номинальную величину. Это надо учитывать при подключении потребителей, распределять их равномерно по фазам.

Когда самодельный генератор создан для работы от двух фаз, то он не может безопасно выработать электроэнергии больше, чем на 2/3 от общей величины, а если задействована всего одна фаза, то - только 1/3.

Контроль частоты

Следить за этим показателем позволяет частотомер. Когда его в конструкцию самодельного генератора не установили, то можно пользоваться косвенным методом: на холостом ходу выходное напряжение превышает номинальное 380/220 на 4÷6% при частоте 50 Гц.

Как сделать самодельный генератор из асинхронного двигателя, Дизайн и ремонт квартир своими руками


Советы домашнему мастеру по изготовлению своими руками самодельного генератора из асинхронного трехфазного электродвигателя со схемами. картинками и видео

Как сделать самодельный генератор из асинхронного двигателя

Всем привет! Сегодня рассмотрим как сделать самодельный генератор из асинхронного двигателя своими руками. Данный вопрос меня давно интересовал, только как то не было времени взяться за его реализацию. А теперь давайте немного займемся теорией.

Если взять и раскрутить от какого нибудь первичного двигателя асинхронный электродвигатель, то следуя принципа обратимости электрических машин можно заставить его вырабатывать электрический ток. Для этого нужно вращать вал асинхронного двигателя с частотой, равной или чуть больше асинхронной частоты его вращения. В результате остаточного магнетизма в магнитопроводе электродвигателя на зажимах статорной обмотки будет индуктироваться некоторая ЭДС.

Теперь возьмем и подключим к выводам статорной обмотки, как показано на рисунке ниже, неполярные конденсаторы С.

При этом по обмотке статора начнет протекать опережающий емкостной ток. Он будет называться намагничивающим. Т.е. произойдет самовозбуждение асинхронного генератора и ЭДС будет расти. Значение ЭДС будет зависеть от характеристики как самой электрической машины, так и от емкости конденсаторов. Тем самым мы с вами превратили обычный асинхронный электродвигатель в генератор.

Теперь поговорим о том, как правильно подобрать конденсаторы для самодельного генератора из асинхронного двигателя. Емкость нужно подбирать так, чтобы генерируемое напряжение и отдаваемая мощность асинхронного генератора соответствовала мощности и напряжению при работе его в качестве электродвигателя. Данные смотри в таблице ниже. Они актуальны для возбуждения асинхронных генераторов напряжением 380 вольт и с частотой вращения от 750 до 1500 об/мин.

С увеличением нагрузки на асинхронный генератор напряжение на его зажимах будет стремиться упасть(увеличиться индуктивная нагрузка на генератор). Для поддержания напряжения на заданном уровне необходимо подключать дополнительные конденсаторы. Для этого можно использовать специальный регулятор напряжения, который при понижении напряжения на выводах статора генератора будет с помощью контактов подключать дополнительные батареи конденсаторов.

Частота вращения генератора в нормальном режиме должна превышать синхронную на 5-10 процентов. То есть если частота вращения составляет 1000 об/мин, то нужно его раскручивать с частотой 1050-1100 об/мин.

Один большой плюс асинхронного генератора в том, что в качестве его можно использовать обычный асинхронный электродвигатель без переделок. Но не рекомендуется особо увлекаться и делать генераторы из электромоторов мощностью более 15-20 кВ*А. Самодельный генератор из асинхронного двигателя отличное решение для тех, у кого нет возможности использовать классический генератор kronotex ламинат. Удачи вам во всем и пока!

Как сделать самодельный генератор из асинхронного двигателя, Ремонт своими руками


Как сделать самодельный генератор из асинхронного двигателя Всем привет! Сегодня рассмотрим как сделать самодельный генератор из асинхронного двигателя своими руками. Данный вопрос меня давно Содержание:

Уют и комфорт в современном жилье во многом зависит от стабильного обеспечения электрической энергией. Бесперебойное электроснабжение достигается различными способами, среди которых считается достаточно эффективным самодельный генератор асинхронного типа, изготавливаемый в домашних условиях. Качественно изготовленное устройство позволяет решить множество бытовых проблем, начиная от выработки переменного тока и заканчивая обеспечением питания инверторных сварочных аппаратов.

Принцип действия электрогенератора

Генераторы асинхронного типа являются устройствами переменного тока, способными вырабатывать электрическую энергию. Принцип действия этих аппаратов аналогичен работе асинхронных двигателей, поэтому они имеют другое название - индукционные электрогенераторы. По сравнению с в этих агрегатах намного быстрее поворачивается ротор, соответственно, скорость вращения становится более высокой. В качестве генератора можно использовать обыкновенный асинхронный двигатель переменного тока, которому не требуются какие-либо преобразования схемы или дополнительные настройки.

Включение однофазного асинхронного генератора осуществляется под действием входящего напряжения, для чего требуется подключение устройства к источнику питания. В некоторых моделях используются конденсаторы, подключаемые последовательно, обеспечивающие им самостоятельную работу за счет самовозбуждения.

В большинстве случаев генераторам требуется какое-то внешнее движущее устройство, вырабатывающее механическую энергию, которая, затем, преобразуется в электрический ток. Чаще всего используются бензиновые или дизельные двигатели, а также ветровые и гидроустановки. Независимо от источника движущей силы, все электрогенераторы состоят из двух основных элементов - статора и ротора. Статор находится в неподвижном положении, обеспечивая движение ротора. Его металлические блоки позволяют регулировать уровень электромагнитного поля. Это поле создается ротором за счет действия магнитов, находящихся на равноудаленном расстоянии от сердечника.

Однако, как уже отмечалось, стоимость даже самых маломощных устройств остается высокой и недоступной для многих потребителей. Поэтому единственным выходом остается собрать генератор тока своими руками, и заранее заложить в него все необходимые параметры. Но, это вовсе не простая задача, особенно для тех, кто слабо разбирается в схемах и не имеет навыков работы с инструментами. Домашний мастер должен обладать специфическим опытом по изготовлению таких устройств. Кроме того, необходимо подобрать все необходимые элементы, детали и запасные части с нужными параметрами и техническими характеристиками. Самодельные устройства успешно используются в быту, несмотря на то, что по многим показателям они значительно уступают заводским изделиям.

Преимущества асинхронных генераторов

В соответствии с вращением ротора все генераторы разделяются на устройства синхронного и асинхронного типа. Синхронные модели обладают более сложной конструкцией, повышенной чувствительностью к перепадам сетевого напряжения, из-за чего снижается их эффективность. У асинхронных агрегатов подобные недостатки отсутствуют. Они отличаются упрощенным принципом работы и прекрасными техническими характеристиками.

Синхронный генератор имеет ротор с магнитными катушками, существенно усложняющими процесс движения. У асинхронного устройства эта деталь напоминает обыкновенный маховик. Особенности конструкции оказывают влияние на коэффициент полезного действия. В синхронных генераторах потери КПД составляют до 11%, а в асинхронных - всего 5%. Поэтому наиболее эффективным будет самодельный генератор из асинхронного двигателя, обладающий и другими преимуществами:

  • Простая конструкция корпуса обеспечивает защиту двигателя от попадания внутрь влаги. Таким образом, снижается потребность с слишком частом техническом обслуживании.
  • Более высокая устойчивость к перепадам напряжения, наличие на выходе выпрямителя, защищающего от поломок подключенные приборы и оборудование.
  • Асинхронные генераторы обеспечивают эффективное питание для сварочных аппаратов, ламп накаливания, компьютерной техники, чувствительной к перепадам напряжения.

Благодаря этим преимуществам и высокому сроку эксплуатации, асинхронные генераторы, даже собранные в домашних условиях, бесперебойно и эффективно обеспечивают электроэнергией бытовые приборы, оборудование, освещение и другие важные участки.

Подготовка материалов и сборка генератора своими руками

Перед началом сборки генератора нужно подготовить все необходимые материалы и детали. В первую очередь понадобится электродвигатель, который может быть изготовлен своими силами. Однако это очень трудоемкий процесс, поэтому в целях экономии времени, нужный агрегат рекомендуется снять со старого нерабочего оборудования. Лучше всего подходят и водяных насосов. Статор должен быть в сборе, с готовой обмоткой. Для выравнивания выходного тока может понадобиться выпрямитель или трансформатор. Также, нужно подготовить электрический провод, а также изоленту.

Перед тем как сделать из электродвигателя генератор, необходимо рассчитать мощность будущего устройства. С этой целью двигатель включается в сеть для определения скорости вращения с помощью тахометра. К полученному результату прибавляется 10%. Эта прибавка является компенсаторной величиной, предупреждающей излишний нагрев двигателя во время работы. Конденсаторы выбираются в соответствии с запланированной мощностью генератора с помощью специальной таблицы.

В связи с выработкой агрегатом электрического тока, необходимо обязательно выполнить его заземление. Из-за отсутствия заземления и некачественной изоляции, генератор не только быстро выйдет из строя, но и станет опасным для жизни людей. Сама сборка не представляет особой сложности. К готовому двигателю по очереди подключаются конденсаторы, в соответствии со схемой. В результате получается генератор переменного тока 220В своими руками малой мощности, достаточный для снабжения электричеством болгарки, электродрели, циркулярной пилы и другого аналогичного оборудования.

В процессе эксплуатации готового устройства необходимо учитывать следующие особенности:

  • Требуется постоянно контролировать температуру двигателя во избежание перегрева.
  • В процессе эксплуатации наблюдается снижение КПД генератора в зависимости от продолжительности его работы. Поэтому периодически агрегату необходимы перерывы, чтобы его температура снизилась до 40-45 градусов.
  • При отсутствии автоматического контроля, эту процедуру нужно периодически выполнять самостоятельно с использованием, амперметра, вольтметра и других измерительных приборов.

Большое значение имеет правильный выбор оборудования, расчет его основных показателей и технических характеристик. Желательно наличие чертежей и схем, существенно облегчающих сборку генераторного устройства.

Плюсы и минусы самодельного генератора

Самостоятельная сборка электрогенератора позволяет сэкономить значительные денежные средства. Кроме того, генератор, собранный собственноручно, будет иметь запланированные параметры и отвечать всем техническим требованиям.

Однако, у таких устройств имеется ряд серьезных недостатков:

  • Возможные частые поломки агрегата из-за невозможности герметично соединить все основные части.
  • Неисправность генератора, значительное снижение его продуктивности в результате неправильного подключения и неточных расчетов мощности.
  • В работе с самодельными устройствами требуются определенные навыки и соблюдение осторожности.

Тем не менее, самодельный генератор на 220В вполне подходит как альтернативный вариант бесперебойного электроснабжения. Даже маломощные устройства способны обеспечить работу основных приборов и оборудования, поддерживая должный уровень комфорта в частном доме или в квартире.



Статьи по теме: