Границы плит земли и их названия. Движение литосферных плит

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift - расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины. С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Теория дрейфа материков

Теория литосферных плит берет свое начало из теории дрейфа материков. Еще в XIX в. многие географы отмечали, что при взгляде на карту можно заметить, что берега Африки и Южной Америки при сближении кажутся совместимыми (рис. 6).

Появление гипотезы движения материков связывают с именем немецкого ученого Альфреда Вегенера (1880-1930) (рис. 7), который наиболее полно разработал эту идею.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков..., когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка — Лавразия и Гондвана.

Лавразия — это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк — Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс — Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент — Пангею (Пан — всеобщий, Ге — земля) (рис. 8).

Рис. 8. Существование единого материка Пангеи (белое — суша, точки — неглубокое море)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым — Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

Рис. 9. Расположение и направления дрейфа континентов в меловой период 180 млн лет назад

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных — листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

Тектоника плит

Определение 1

Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.

Замечание 1

Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.

Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.

В настоящее время движение тектонических плит продолжается.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Рисунок 1. Типы движений тектонических плит. Автор24 - интернет-биржа студенческих работ

В процессе становления, а затем и развития геологии как науки предлагались многие гипотезы, каждая из которых с тех или иных позиций рассматривала и объясняла либо отдельные проблемы, либо комплекс проблем, касающихся развития земной коры или Земли в целом. Эти гипотезы получили название геотектонических. Одни из них из-за недостаточной убедительности быстро утрачивали свое значение в науке, другие же оказывались более долговечными, опять-таки до тех пор, пока не накапливались новые факты и представления, положенные в основу новых гипотез, более соответствующих данному этапу развития науки. Несмотря на большие успехи, достигнутые в изучении строения и развития земной коры, ни одна из современных гипотез и теорий (даже признанных) не в состоянии с достаточной достоверностью и в полной мере объяснить все условия формирования земной коры.

Первая научная гипотеза-гипотеза поднятия- была сформулирована в первой половине XIX в. на основе представлений плутонистов о роли внутренних сил Земли, которая сыграла положительную роль в борьбе с ошибочными представлениями нептунистов. В 50-х гг. XIX в. она была заменена более обоснованной в то время гипотезой контракции (сжатая), изложенной французским ученым Эли де Бомоном. Гипотеза контракции опиралась на космогоническую гипотезу Лапласа, признававшую, как известно первичное горячее состояние Земли и последующее постепенное ее охлаждение.

Сущность контракционной гипотезы заключается в том, что охлаждение Земли вызывает ее сжатие с последующим уменьшением ее объема. В результате земная кора, затвердевшая раньше внутренних зон планеты, вынуждена сморщиваться, отчего образуются складчатые горы.

Во второй половине XIX в. американскими учеными Дж. Холлом и Дж. Дэном было сформулировано учение о геосинклиналях - особых подвижных зонах земной коры со временем превращающихся в складчатые горные сооружения. Это учение заметно усилило позиции гипотезы контракции. Однако к началу XX в. в связи с получением новых данных о Земле эта гипотеза стала утрачивать свое значение, так как оказалась не в состоянии объяснить периодичность горообразовательных движений и процессов магматизма, игнорировала процессы растяжения и т. д. К тому же в науке возникли представления об образовании планеты из холодных частиц, что лишило гипотезу ее основной опоры.

Вместе с тем учение о геосинклиналях продолжало дополняться и развиваться. В этом отношении большой вклад внесен и советскими учеными А. Д. Архангельским, Н. С. Шатским, М. В. Муратовым и др. Наряду с представлениями о подвижных зонах - геосинклиналях и на основе их в конце XIX в. и особенно с начала XX в. стало развиваться учение об относительно устойчивых континентальных площадях - платформах; из отечественных ученых, развивавших это учение, надо прежде всего назвать А. П. Карпинского, А. Д. Архангельского, Н. С. Шатского, А. А. Богданова, А. Л. Яншина.

Учение о геосинклиналях и платформах прочно вошло в геологическую науку и сохраняет свое значение до настоящего времени. Однако прочной теоретической базы оно до сих пор не имеет.

Стремление к дополнению и устранению недостатков в контракционной гипотезе или, наоборот, к ее полной замене привело к появлению на протяжении первой половины XX в. ряда новых геотектонических гипотез. Отметим некоторые из них.

Пульсационная гипотеза. В основе ее лежит представление о чередовании процессов сжатия и расширения Земли - процессов, весьма характерных для Вселенной в целом. М. А. Усов и В. А. Обручев, развивавшие эту гипотезу, с фазами сжатия связывали складчатость, надвиги, внедрение кислых интрузий, а с фазами расширения - возникновение трещин в земной коре и излияние по ним преимущественно основных лав.

Гипотеза дифференциации подкорового вещества и миграции радиоэлементов. Под действием гравитационной дифференциации и радиогенного разогрева происходит периодическое выплавление жидких компонентов из атмосферы, что влечет за собой разрывы земной коры, вулканизм, горообразование и другие явления. Одним из авторов этой гипотезы является известный советский ученый В. В. Белоусов.

Гипотеза дрейфа материков. Она была изложена в 1912 г. немецким ученым А. Вегенером и принципиально отличается от всех других гипотез. Основана на принципах мобилизма - признания значительных горизонтальных перемещений обширных континентальных масс. Большинство гипотез исходило из принципов фиксизма - признания стабильного, фиксированного положения отдельных частей земной коры, относительно подстилающей мантии (такими являются гипотезы контракции, дифференциации подкорового вещества и миграции радиоэлементов и др.).

Согласно представлениям А. Вегенера, гранитный слой земной коры “плавает” по базальтовому слою. Под влиянием вращения Земли он оказался собранным в единый материк Пангея. В конце палеозойской эры (около 200-300 млн. лет назад) произошло дробление Пангеи на отдельные блоки и начался их дрейф, пока они не заняли современное положение. Под влиянием дрейфа блоков Северной и Южной Америки на запад возник Атлантический океан, а сопротивление, которое испытывали эти материки при своем движении по базальтовому слою, способствовало возникновению таких гор, как Анды и Кордильеры. По тем же причинам Австралия и Антарктида раздвинулись и сместились на юг и т. д.

Подтверждение своей гипотезы А. Вегенер видел в сходстве контуров и геологического строения побережий по обе стороны Атлантического океана, в сходстве ископаемых организмов материков, далеко отстоящих друг от друга, в различном строении земной коры в пределах океанов и материков.

Появление гипотезы А. Вегенера вызвало большой интерес, но он сравнительно быстро угас, так как она не в состоянии была объяснить многие явления, а главное - возможность движения материков по базальтовому слою. Тем не менее, как увидим ниже, мобилистские взгляды, но на совершенно новой основе, возродились и получили широкое признание во второй половине XX в.

Ротационная гипотеза. Занимает обособленное место среди геотектонических гипотез, так как усматривает проявление тектонических процессов на Земле под воздействием внеземных причин, а именно притяжения Луны и Солнца, вызывающих твердые приливы в земной коре и мантии, замедляющие вращение Земли и изменяющие ее форму. Следствием этого являются не только вертикальные, но и горизонтальные перемещения отдельных глыб земной коры. Гипотеза не находит широкого признания, так как абсолютное большинство ученых считают, что тектогенез является результатом проявления внутренних сил Земли. Вместе с тем влияние внеземных причин на формирование земной коры, очевидно, тоже необходимо учитывать.

Теория новой глобальной тектоники, или тектоники литосферных плит. С начала второй половины XX в. развернулись обширные геолого-геофизические исследования дна Мирового океана. Результатом их явилось появление совершенно новых представлений о развитии океанов, таких, например, как раздвиг литосферных плит и формирование молодой океанической коры в рифтовых долинах, образование континентальной коры в зонах поддвига литосферных плит и др. Эти представления привели к возрождению в геологической науке мобилистских идей и к появлению теории новой глобальной тектоники, или тектоники литосферных плит.

В основу новой теории положено представление, что вся литосфера (т. е. земная кора совместно с верхним слоем мантии) разделяется узкими тектонически активными зонами на отдельные жесткие плиты, перемещающиеся по астеносфере (пластичный слой в верхней мантии). Активными тектоническими зонами, характеризующимися высокой сейсмичностью и вулканизмом, являются рифтовые зоны срединно-океанических хребтов, системы островных дуг и глубоководных желобов океанов, рифтовые долины на материках. В рифтовых зонах срединно-океанических хребтов происходит раздвигание плит и образование новой океанической коры, а в глубоководных желобах - поддвигание одних плит под другие и образование континентальной коры. Возможно и столкновение плит - результатом такого явления считается образование Гималайской складчатой зоны.

Различают семь крупных литосферных плит и несколько большее число мелких. Эти плиты получили следующие названия: 1) Тихоокеанская, 2) Северо-Американская, 3) Южно-Американская, 4) Евразийская, 5) Африканская, 6) Индо-Австралийская и 7) Антарктическая. В состав каждой из них входят один или несколько материков или их части и океаническая кора, за исключением Тихоокеанской плиты, почти целиком состоящей из океанической коры. Одновременно с горизонтальными перемещениями плит происходили и их повороты.

Перемещение литосферных плит, согласно данной теории, вызывается конвективными течениями вещества в мантии, порождаемыми теплом, выделяемым при радиоактивном распаде элементов и гравитационной дифференциации вещества в недрах Земли. Однако аргументированность тепловой конвекции в мантии, по мнению многих ученых, является недостаточной. Это касается также возможности погружения океанских плит в мантию на большую глубину и ряда других положений. Поверхностным выражением конвективного движения служат рифтовые зоны срединно-океанских хребтов, где относительно более нагретая мантия, поднимаясь к поверхности, подвергается плавлению. Она изливается в виде базальтовых лав и застывает. Далее в эти застывшие породы вновь внедряется базальтовая магма и раздвигает в обе стороны более древние базальты. Так происходит много раз. При этом океанское дно наращивается, разрастается. Подобный процесс получил название спрединга . Скорость разрастания океанского дна колеблется от нескольких мм до 18 см в год.

Другие границы между литосферными плитами являются конвергентными, то есть земная кора на эти участках поглощается. Такие зоны были названы зонами субдукции. Располагаются они по краям Тихого океана и на востоке Индийского. Тяжелая и холодная океанская литосфера, подходя к более толстой и легкой континентальной, уходит под нее, как бы подныривает. Если в контакт входят две океанские плиты, то погружается более древняя, так как она тяжелее и холоднее, чем молодая плита.

Зоны, где происходит субдукция, морфологически выражены глубоководными желобами, а сама погружающаяся океанская холодная и упругая литосфера хорошо устанавливается по данным сейсмической томографии. Угол погружения океанских плит различный, вплоть до вертикального, и плиты прослеживаются до границы верхней и нижней мантий на глубине примерно 670 км.

Когда океанская плита при подходе к континентальной начинает резко изгибаться, в ней возникают напряжения, которые, разряжаясь, провоцируют землетрясения. Гипоцентры или очаги землетрясений четко маркируют границу трения между двумя плитами и образуют наклонную сейсмофокальную зону, погружающуюся под континентальную литосферу до глубин 700 км. Эти зоны называются зонами Беньофа, в честь исследовавшего их американского сейсмолога.

Погружение океанской литосферы приводит еще к одним важным последствиям. При достижении литосферы глубины 100 – 200 км в области высоких температур и давлений из нее выделяются флюиды – особые перегретые минеральные растворы, которые вызывают плавление горных пород континентальной литосферы и образование магматических очагов, питающих цепи вулканов, развитых параллельно глубоководным желобам на активных континентальных окраинах.

Таким образом, на активной континентальной окраине благодаря субдукции наблюдается сильно расчлененный рельеф, высокая сейсмичность и энергичная вулканическая деятельность.

Кроме явления субдукции существует так называемая обдукция , то есть надвигание океанской литосфера на континентальную, примером которой является огромный тектонический покров на восточной окраине Аравийского полуострова, сложенный типичной океанской корой.

Следует также упомянуть о столкновении, или коллизии , двух континентальный плит, которые в силу относительной легкости слагающего их материала не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением.

Основными положениями тектоники литосферных плит являются следующие:

1.Первой предпосылкой тектоники плит является разделение верхней части твердой Земли на две оболочки, существенно отли­чающиеся по реологическим свойствам (вязкости),- жесткую и хрупкую литосферу и более пластичную и подвижную астеносферу. Как уже говорилось, выделение этих двух оболочек произво­дится по сейсмологическим или магнитотеллурическим данным.

2.Второе положение тектоники плит, которому она и обязана своим названием, состоит в том, что литосфера естественно под­разделена на ограниченное число плит-в настоящее время семь крупных и столько же малых.Основанием для их выде­ления и проведения границ между ними служит размещение оча­гов землетрясений.

3.Третье положение тектоники плит касается характера их взаимных перемещении. Различают три рода таких перемещений и соответственно границ между плитами: 1)дивергентные грани­цы, вдоль которых происходит раздвижение плит,- спрединг; 2) конвергентные границы, на которых идет сближение плит, обычно выражающееся поддвигом одной плиты под другую; если океанская плита пододвигается под континентальную, этот процесс называетсясубдукцией, если океанская плита надвигается на континентальную -обдукцией; если сталкиваются две континентальные плиты, тоже обычно с поддвигом одной под другую,- коллизией; 3)трансформные границы, вдоль которых происходит горизонтальное скольжение одной плиты относительно другой по плоскости вертикального трансформного разлома.

В природе преобладают границы первых двух типов.

На дивергентных границах, в зонах спрединга, происходит не­прерывное рождение новой океанской коры; поэтому эти границы называют еще конструктивными. Кора эта перемещается астеносферным течением в сторону зон субдукции, где она поглощается на глубине; это дает основание называть такие границыдеструктивными.

Четвертое положение тектоники плит заключается в том, что при своих перемещениях плиты подчиняются законам сферической геометрии, а точнеетеореме Эйлера, согласно которой любое пе­ремещение двух сопряженных точек по сфере совершается вдоль окружности, проведенной относительно оси, проходящей через центр Земли.

5.Пятое положение тектоники плит гласит, что объем погло­щаемой в зонах субдукции океанской коры равен объему коры, нарождающейся в зонах спрединга.

6.Шестое положение тектоники плит усматривает основную причину движения плит в мантийнойконвекции. Эта конвекция в классической модели 1968г. является чисто тепловой и общеман­тийной, а способ ее воздействия на литосферные плиты состоит в том, что эти плиты, находящиеся в вязком сцеплении с астеносферой, увлекаются течением последней и движутся на манер ленты конвейера от осей спрединга к зонам субдукции. В целом схе­ма мантийной конвекции, приводящей к плитнотектонической модели движений литосферы, состоит в том, что под срединно-океан­скими хребтами располагаются восходящие ветви конвективных ячей, под зонами субдукции-нисходящие, а в промежутке между хребтами и желобами, под абиссальными равнинами и конти­нентами - горизонтальные отрезки этих ячей.

Теория новой глобальной тектоники, или тектоники литосферных плит особенно популярна за рубежом: признается она и многими советскими учеными, которые не ограничиваются общим признанием, а много работают над уточнением основных его положений, дополняя, углубляя и развивая их. Советский ученый-мобилист А. В. Пейвс, развивая эту теорию, пришел, однако, к выводу, что гигантских жестких литосферных плит вообще не существует, а литосфера, в силу того что она пронизана горизонтальными, наклонными и вертикальными подвижными зонами, состоит из отдельных пластин (“литопластин”), перемещающихся дифференцированно. Это существенно новый взгляд на одно из основных, но спорных положений данной теории.

Отметим, что определенная часть ученых-мобилистов (как за рубежом, так и отечественных) в своих взглядах проявляют крайне отрицательное отношение к классическому учению о геосинклиналях по сути полностью его отвергают, не считаясь с тем, что многие положения этого учения опираются на достоверные факты и наблюдения, установленные и осуществленные при геологических исследованиях материков.

Очевидно, что наиболее правильным путем в создании действительно глобальной теории Земли является не противопоставление, а выявление единства и взаимосвязи между всем положительным, отраженном в классическом учении о геосинклиналях, и всем тем новым, что раскрывается в теории новой глобальной тектоники.

Возможно, некоторые читатели слышали рассуждения на тему отождествления планеты Земля с неким живым сверхорганизмом. В частности, обычно утверждается, что Земля способна сама по себе контролировать процессы, происходящие на ней и с ней, помимо этого отвечая за существование жизни. Речь идёт о теории Геи . Гея в свою очередь являлась древнегреческой богиней Земли. По большому счёту совершенно не важно будет ли жизнь на планете следствием «осознанной» деятельности самой планеты как организма, стечением ряда «случайных» обстоятельств или же следствием существования вселенского закона о благоприятных для жизни зонах.

Так или иначе, жизнь на планете существует, и вполне вероятно, что для того чтобы она возникла, необходимы были множество различных по своей природе совпадений или допущений. Одним из которых, безусловно, является геология планеты.

За геологическую активность на Земле отвечают тектонические или литосферные плиты.

Литосферные плиты нашей планеты

Для более наглядного представления можно посмотреть 3D-модель:

Считается, что движение плит может влиять на существование жизни на планете. Так, геологическая активность свойственна не только Земле, но и небесным телам Солнечной системы. Впрочем, Земля уникальна не наличием землетрясений, которые есть даже на или Марсе (которые называются лунотрясения и марсотрясения, соответственно), а скорее наличием развитой и сильной тектонической активности.

Сейсмометр на Луне

Также Земля единственная планета в Солнечной системе, внешняя кора которой разбивается на плиты. Тектонические плиты достигают десятков километров толщины.

Мощность (толщина) слоёв Земли

Причину движения тектонических плит и материков пытались описать расширением радиуса Земли. Это очень красивая гипотеза, которая вряд ли имеет что-то общее с действительностью.

Модели Кристофа Хильгенберга, демонстрирующие расширяющуюся Землю

На самом деле, основной причиной активного движения литосферных плит является тепловая конвекция. Нижние слои при нагревании становятся легче и всплывают, а верхние вдали от источника тепла остывают и, тяжелея, опускаются вниз. Конвекцию можно наблюдать при движении ветра, когда в одних частях Земли воздух нагревается, а в других охлаждается в месте соприкосновения и создаётся движение. И если наблюдать ветер и воздушные потоки мы, по сути, не можем (их возможно только почувствовать), то на явление конвекции в лавовой лампе можно посмотреть.

Конечно масло в лавовой лампе - это не магматические горные породы в мантии, но не стоит забывать и про такой фактор как время. А именно, тот факт, что в масштабе секунд (в котором по сути живёт и мыслит отдельный человек) вещество мантии Земли твёрдое, но в масштабе лет и десятилетий это вещество приобретает жидкие свойства. Возможно, также это зависит от размеров рассматриваемого объекта.

Сравнение конвекции в мантии Земли и в лавовых лампах

Отчасти это говорит и о том, что жизнь и скорость восприятия окружающего пространства предпочтительнее всего именно в масштабе секунд (или максимум минут). Тогда как глобальные и космические процессы должны существовать в более медленном масштабе времени. Получается, что помимо необходимости существования благоприятных зон для жизни, существует необходимость и некоторого временного окна определённого масштаба. Но об этом мы поговорим позже.

Интересно будет посмотреть на явление конвекции в мантии по результатам современных исследований Шмеллинга , которые отображают холодные (синим) и горячие (красным) области в мантии Земли.

Конвективное движение в мантии Земли, цвет отображает температуру. Координата z отображает глубину до границы мантии с ядром (разрыв Гутенберга), а координата x отображает часть длины окружности ядра (или разрыва Гутенберга)

На данном изображении хорошо видно конвективное движение внутри мантии. Движение, вызываемое конвекцией, приводит к ряду процессов, а именно движению тектонических плит и его последствиям.

Движение между двумя плитами очевидно может быть либо сходящимся и сталкивающимся, либо же расходящимся с образованием разлома. Схождение или конвергенция приводит к субдукции (одна плита залезает под другую) или коллизии (смятие двух плит с образованием горных цепей). Расхождение или дивергенция приводит к спредингу (раздвижению плит с образованием хребтов в океанах) и рифтингу (с образованием разлома континентальной коры). Также существует третий тип движения плит - трансформный, когда плиты двигаются вдоль разлома. Так или иначе о характере движения плит стоит поговорить отдельно, особенно учитывая большое количество терминологии.

Скорость движения тектонических плит Земли, и типы движения этих плит у их границ

Также стоит упомянуть о толщине плит, или их мощности. Земная кора бывает материковой и океанической; океаническая земная кора достигает 5–15 км, тогда как материковая земная кора достигает 15–80 км. Это говорит о том, что по сравнению с мантией земная кора крайне «тонка». Поэтому движение плит и их стабильное состояние даже в масштабе секунд крайне сложно себе вообразить (если это вообще возможно). И поэтому движение тектонических плит само по себе может вызвать крайнее удивление своей невозможностью структуры, сложностью реализации и кажущейся ненадёжностью. Так или иначе, ничего лучшего нам не дано.

Результатом движения плит, помимо существующей жизни (хотя это и не доказано), можно назвать землетрясения и вулканизм. Если вулканы распространены не только на границах плит, то карта землетрясений за последние десятки лет чётко вырисовывает границы тектонических плит, и зависимость здесь видимо прямая. Кольцо вулканов вокруг Тихоокеанской плиты называют «Тихоокеанское огненное кольцо».

Карта недавних землетрясений и активных вулканов

К чему же приведёт движение тектонических плит на Земле в будущем, и что из этого получится, мы расскажем в последующих материалах.

Что мы знаем о литосфере?

Тектонические плиты — это крупные стабильные участки коры Земли, которые являются составными частями литосферы. Если обратиться к тектонике, науке, изучающей литосферные платформы, то мы узнаем, что большие по площади участки земной коры со всех сторон ограничены специфическими зонами: вулканической, тектонической и сейсмической активностями. Именно на стыках соседствующих плит и происходят явления, которые, как правило, имеют катастрофические последствия. К ним можно причислить как извержения вулканов, так и сильные по шкале сейсмической активности землетрясения. В процессе изучения планеты тектоника платформ сыграла очень важную роль. Ее значение можно сравнить с открытием ДНК или гелиоцентрической концепцией в астрономии.

Если вспомнить геометрию, то мы можем представить, что одна точка может быть местом соприкосновения границ трех и более плит. Изучение тектонической структуры земной коры показывают, что наиболее опасными и быстро разрушающимися, являются стыки четырех и более платформ. Данное формирование наиболее неустойчивое.

Литосфера делится на два типа плит, разных по своим характеристикам: континентальную и океаническую. Стоит выделить тихоокеанскую платформу, сложенную из океанической коры. Большинство других состоят из так называемого блока, когда континентальная плита впаивается в океаническую.

Расположение платформ показывает, что около 90% поверхности нашей планеты состоит из 13 больших по размеру, стабильных участков земной коры. Остальные 10% припадают на небольшие формирования.

Ученые составили карту наиболее крупных тектонических плит:

  • Австралийская;
  • Аравийский субконтинент;
  • Антарктическая;
  • Африканская;
  • Индостанская;
  • Евразийская;
  • Плита Наска;
  • Плита Кокос;
  • Тихоокеанская;
  • Северо- и южно-американские платформы;
  • Плита Скотия;
  • Филипинская плита.

Из теории мы знаем, что твердая оболочка земли (литосфера) состоит не только из плит, формирующих рельеф поверхности планеты, но и из глубинной части — мантии. Континентальные платформы имеют толщину от 35 км (на равнинных территориях) до 70 км (в зоне горных массивов). Учеными доказано, что наибольшую толщину имеет плита в зоне Гималаев. Здесь толщина платформы достигает 90 км. Самая тонкая литосфера находится в зоне океанов. Ее толщина не превышает 10 км, а в некоторых районах этот показатель равняется 5 км. На основании информации о том, на какой глубине находится эпицентр землетрясения и какова скорость распространения сейсмических волн, производятся расчеты толщины участков земной коры.

Процесс формирования литосферных плит

Литосфера состоит преимущественно из кристаллических веществ, образовавшихся в результате охлаждения магмы при выходе на поверхность. Описание структуры платформ говорит об их неоднородности. Процесс формирования земной коры происходил длительный период, и длится до сих пор. Через микротрещины в породе расплавленная жидкая магма выходила на поверхность, создавая новые причудливые формы. Ее свойства менялись в зависимости от смены температуры, и образовывались новые вещества. По этой причине минералы, которые находятся на разной глубине, отличаются по своим характеристикам.

Поверхность земной коры зависит от влияния гидросферы и атмосферы. Постоянно происходит выветривание. Под действием данного процесса меняются формы, а минералы измельчаются, меняя свои характеристики при неизменном химическом составе. В результате выветривания поверхность становилась более рыхлой, появлялись трещины и микровпадины. В этих местах появлялись отложения, которые нам известны как грунт.

Карта тектонических плит

На первый взгляд кажется, что литосфера стабильна. Верхняя ее часть таковой и является, но вот нижняя, которая отличается вязкостью и текучестью, подвижна. Литосфера делится на определенное число частей, так называемых тектонических плит. Ученые не могут сказать из скольких частей состоит земная кора, поскольку помимо крупных платформ, имеются и более мелкие формирования. Названия самых больших плит были приведены выше. Процесс формирования земной коры происходит постоянно. Мы этого не замечаем, поскольку данные действия происходят очень медленно, но сопоставив результаты наблюдений за разные периоды, можно увидеть, на сколько сантиметров в год смещаются границы образований. По этой причине тектоническая карта мира постоянно обновляется.

Тектоническая плита Кокос

Платформа Кокос является типичным представителем океанических частей земной коры. Она расположена в Тихоокеанском регионе. На западе ее граница проходит по хребту Восточно-Тихоокеанского поднятия, а на востоке ее границу можно определить условной линией вдоль побережья Северной Америки от Калифорнии до Панамского перешейка. Данная плита пододвигается под соседнюю Карибскую плиту. Эта зона отличается высокой сейсмической активностью.

Сильнее всего от землетрясений в данном регионе страдает Мексика. Среди всех стран Америки именно на ее территории расположено больше всего потухших и действующих вулканов. Страна перенесла большое количество землетрясений с магнитудой выше 8 баллов. Регион достаточно густонаселенный, поэтому помимо разрушений, сейсмическая активность приводит и к большому числу жертв. В отличии от Кокоса, расположенные в другой части планеты, Австралийская и Западно-Сибирская платформы отличаются стабильностью.

Движение тектонических плит

Долгое время ученые пытались выяснить, почему в одном регионе планеты гористая местность, а в другом равнинная, и почему происходят землетрясения и извержения вулканов. Различные гипотезы строились преимущественно на тех знаниях, которые были доступны. Лишь после 50-х годов двадцатого столетия удалось более детально изучить земную кору. Изучались горы, образованные на местах разлома плит, химический состав этих плит, а также создавались карты регионов с тектонической активностью.

В изучении тектоники особое место заняла гипотеза о перемещениях литосферных плит. Еще в начале двадцатого века немецкий геофизик А. Вегенер выдвинул смелую теорию о том, почему они двигаются. Он тщательно исследовал схему очертаний западного побережья Африки и восточного побережья Южной Америки. Отправной точкой в его исследованиях стала именно схожесть очертаний данных континентов. Он предположил, что, возможно, эти материки были раньше единым целым, а затем произошел разлом и начался сдвиг частей коры Земли.

Его исследования затрагивали процессы вулканизма, растяжение поверхности дна океанов, вязко-жидкую структуру земного шара. Именно труды А. Вегенера были положены в основу исследований, проводимых в 60-х годах прошлого века. Они стали фундаментом для возникновения теории «тектоники литосферных плит».

Данная гипотеза описывала модель Земли следующим образом: тектонические платформы, имеющие жесткую структуру и обладающие разной массой, размещались на пластичном веществе астеносферы. Они находились в очень неустойчивом состоянии и постоянно перемещались. Для более простого понимания можно провести аналогию с айсбергами, которые постоянно дрейфуют в океанических водах. Так и тектонические структуры, находясь на пластичном веществе, постоянно перемещаются. Во время смещений плиты постоянно сталкивались, заходили одна на другую, возникали стыки и зоны раздвижения плит. Данный процесс происходил из-за разности в массе. В местах столкновений образовывались области с повышенной тектонической активностью, возникали горы, происходили землетрясения и извержения вулканов.

Скорость смещения составляла не более 18 см в год. Образовывались разломы, в которые поступала магма из глубинных слоев литосферы. По этой причине породы, составляющие океанические платформы, имеют разный возраст. Но ученые выдвинули даже более невероятную теорию. По мнению некоторых представителей научного мира, магма выходила на поверхность и постепенно охлаждалась, создавая новую структуру дна, при этом «избытки» земной коры под действием дрейфа плит, погружались в земные недра и снова превращались в жидкую магму. Как бы там ни было, а движения материков происходят и в наше время, и по этой причине создаются новые карты, для дальнейшего изучения процесса дрейфа тектонических структур.



Статьи по теме: