Как определить, какие точки находятся внутри многоугольника, а какие нет (большое количество точек).

Область определения функции, вычислить ее производную, найти область определения производной функции, найти точки обращения производной в ноль, доказать принадлежность найденных точек области определения исходной функции.

Пример 1Определите критические точки функции y = (x - 3)²·(x-2).

РешениеНайдите область определения функции, в данном случае ограничений нет: x ∈ (-∞; +∞);Вычислите производную y’. По правилам дифференцирования произведения двух имеется: y’ = ((x - 3)²)’·(x - 2) + (x - 3)²·(x - 2)’ = 2·(x - 3)·(x - 2) + (x - 3)²·1. После получается квадратное уравнение: y’ = 3·x² – 16·x + 21.

Найдите область определения производной функции: x ∈ (-∞; +∞).Решите уравнение 3·x² – 16·x + 21 = 0 для того, чтобы найти, при каких обращается в ноль: 3·x² – 16·x + 21 = 0.

D = 256 – 252 = 4x1 = (16 + 2)/6 = 3; x2 = (16 - 2)/6 = 7/3.Итак, производная обращается в ноль при значениях x, равных 3 и 7/3.

Определите, принадлежат ли найденные точки области определения исходной функции. Поскольку x (-∞; +∞), то обе эти точки являются критическими.

Пример 2Определите критические точки функции y = x² – 2/x.

РешениеОбласть определения функции: x ∈ (-∞; 0) ∪ (0; +∞), поскольку x стоит в знаменателе.Вычислите производную y’ = 2·x + 2/x².

Область определения производной функции та же, что у исходной: x ∈ (-∞; 0) ∪ (0; +∞).Решите уравнение 2·x + 2/x² = 0:2·x = -2/x² → x = -1.

Итак, производная обращается в ноль при x = -1. Выполнено необходимое, но недостаточное условие критичности. Поскольку x=-1 попадает в интервал (-∞; 0) ∪ (0; +∞), то эта точка являются критической.

Источники:

  • Критический объем реализации, штПорог

Многие женщины страдают от предменструального синдрома, который проявляется не только болезненными ощущениями, но и повышенным аппетитом. В результате критические дни могут значительно замедлить процесс похудения.

Причины повышения аппетита во время критических дней

Причиной повышения аппетита в период критических дней является изменение общего гормонального фона в женском организме. За несколько дней до наступления менструации уровень гормона прогестерона повышается, организм настраивается на возможную и старается сделать дополнительные запасы энергии в виде жировых отложений, даже если женщина сидит . Таким образом, изменение веса в критические дни – это нормальное явление.

Как питаться во время месячных

Постарайтесь не есть в эти дни сладости, кондитерские изделия и другие высококалорийные продукты, содержащие «быстрые» . Их избыток немедленно отложится в жир. Многим женщинам в этот период очень хочется съесть шоколадку, в этом случае можно купить горький шоколад и побаловать себя несколькими дольками, но не больше. В период месячных не стоит употреблять алкогольные напитки, маринады, соленья, копчености, семечки и орехи. Соленья и копчености вообще стоит ограничить в рационе за 6-8 дней до начала менструации, поскольку такие продукты увеличивают запасы воды в организме, а этот период характеризуется повышением накопления жидкости. Чтобы сократить количество соли в рационе, добавляйте ее в минимальном количестве в готовые блюда.

Рекомендуется употреблять нежирные молочные продукты, растительную пищу, каши. Будут полезны бобовые, отварной картофель, рис - продукты, в состав которых входят «медленные» углеводы. Восполнить потери железа помогут морепродукты, печень, рыба, говядина, птица, яйца, бобовые, сухофрукты. Будут полезны пшеничные отруби. Естественной реакцией в период месячных являются отеки. Скорректировать состояние помогут легкие мочегонные травы: базилик, укроп, петрушка, сельдерей. Их можно использовать в качестве приправы. Во второй половине цикла рекомендуется употреблять белковые продуктов (нежирные сорта мяса и рыбы, молочные продукты), а количество углеводов в рационе следует максимально снизить.

Экономическое понятие критического объема продаж соответствует положению предприятия на рынке, при котором выручка от реализации товара является минимальной. Такая ситуация называется точкой безубыточности, когда спрос на продукцию падает и прибыль едва покрывает себестоимость. Чтобы определить критический объем продаж , используют несколько методов.

Инструкция

Рабочий цикл не ограничивается его деятельностью – производством или услуг. Это сложная труда определенной структуры, включающей работу основного персонала, управленческого аппарата, менеджерского состава и др., а также экономистов, задача которых – финансовый анализ предприятия.

Целью этого анализа является расчет некоторых величин, которые в той или иной степени влияют на размер конечной прибыли. Это различные виды объемов производства и реализации, полной и средней , показатели спроса и и т.д. Основная задача – выявить такой объем производства, при котором устанавливается стойкая взаимосвязь между затратами и прибылью.

Минимальный объем продаж , при котором доход полностью покрывает затраты, но не увеличивает собственный капитал компании, называется критическим объемом продаж . Есть три метода расчета способа этого показателя: метод уравнений, маржинального дохода и графический.

Чтобы определить критический объем продаж по первому методу, составьте уравнение вида:Вп – Зпер – Зпос = Пп = 0, где:Вп – выручка от продаж и ;Зпер и Зпос – затраты переменные и постоянные;Пп – прибыль от продаж и.

По другому методу первое слагаемое, выручка от продаж , представьте в виде произведения маржинального дохода от единицы товара на объем продаж , то же касается переменных затрат. Постоянные затраты распространяются на всю партию товара, поэтому эту составляющая оставьте общей:МД N – Зпер1 N – Зпос = 0.

Выразите из этого уравнения величину N, и вы получите критический объем продаж :N = Зпос/(МД – Зпер1), где Зпер1 – переменные затраты на единицу товара.

Графический метод предполагает построение . Нанесите на координатную плоскость две линии: функцию выручки от продаж за вычетом обоих затрат и функцию прибыли. На оси абсцисс откладывайте объем продукции, а по оси ординат – доход от соответствующего количества товара, выраженный в денежных единицах. Точка пересечения этих линий соответствует критическому объему продаж , положению безубыточности.

Источники:

  • как определить критическую работу

Критическое мышление представляет собой совокупность суждений, на основе которых формируются определенные выводы, и делается оценка объектов критики. Оно особенно свойственно исследователям и ученым всех отраслей науки. Критическое мышление занимает более высокую ступень по сравнению с обыденным.

Ценность опыта в формировании критического мышления

Сложно анализировать и делать выводы относительно того, в чем плохо разбираешься. Следовательно, чтобы научиться мыслить критически, необходимо изучать объекты во всевозможных связях и взаимоотношениях с другими явлениями. А также большое значение в данном деле имеет владение информацией о подобных объектах, умение выстраивать логические цепочки суждений и делать обоснованные выводы.

К примеру, судить о ценности художественного произведения можно только зная достаточно много других плодов литературной деятельности. При этом неплохо быть знатоком истории развития человечества, становления литературы и литературной критики. В отрыве от исторического контекста произведение может потерять заложенный в него смысл. Чтобы оценка художественного произведения была достаточно полной и обоснованной, необходимо также использовать свои литературоведческие знания, которые включают в себя правила построения художественного текста в рамках отдельных жанров, систему различных литературных приемов, классификацию и анализ существующих стилей и направлений в литературе и т.д. При этом важным является и изучение внутренней логики сюжета, последовательности действий, расстановки и взаимодействия персонажей художественного произведения.

Особенности критического мышления

Среди прочих особенностей критического мышления можно выделить следующие:
- знания об исследуемом объекте являются лишь отправной точкой для дальнейшей мозговой деятельности, связанной с построением логических цепочек;
- последовательно выстроенные и основанные на здравом смысле рассуждения приводят к выявлению истинной и ошибочной информации об изучаемом объекте;
- критическое мышление всегда связано с оценкой имеющейся информации о данном объекте и соответствующими выводами, оценка же, в свою очередь, связана с уже имеющимися навыками.

В отличие от обыденного мышления, критическое не подчинено слепой вере. Критическое мышление позволяет с помощью целой системы суждений об объекте критики постичь ее суть, выявить истинные знания о ней и опровергнуть ложные. Оно основано на логике, глубине и полноте изучения, правдивости, адекватности и последовательности суждений. При этом очевидные и давно доказанные утверждения принимаются как постулаты и не требуют повторного доказательства и оценки.

Рассмотрим следующий рисунок.

На нем изображен график функции y = x^3 – 3*x^2. Рассмотрим некоторый интервал содержащий точку х = 0, например от -1 до 1. Такой интервал еще называют окрестностью точки х = 0. Как видно на графике, в этой окрестности функция y = x^3 – 3*x^2 принимает наибольшее значение именно в точке х = 0.

Максимум и минимум функции

В таком случае, точку х = 0 называют точкой максимума функции. По аналогии с этим, точку х = 2 называют точкой минимума функции y = x^3 – 3*x^2. Потому что существует такая окрестность этой точки, в которой значение в этой точке будет минимальным среди всех других значений из этой окрестности.

Точкой максимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) < f(x0).

Точкой минимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) > f(x0).

В точках максимума и минимума функций значение производной функции равно нулю. Но это не достаточное условие для существования в точке максимума или минимума функции.

Например, функция y = x^3 в точке х = 0 имеет производную равную нулю. Но точка х = 0 не является точкой минимума или максимума функции. Как известно функция y = x^3 возрастает на всей числовой оси.

Таким образом, точки минимума и максимума всегда будут находиться среди корне уравнения f’(x) = 0. Но не все корни этого уравнения будут являться точками максимума или минимума.

Стационарные и критические точки

Точки, в которых значение производной функции равно нулю, называются стационарными точками. Точки максимума или минимума могут иметься и вточках, в которых производной у функции вообще не существует. Например, у = |x| в точке х = 0 имеет минимум, но производной в этой точке не существует. Эта точка будет являться критической точкой функции.

Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует, то есть функция в этой точке недифференцируема. Для того чтобы найти максимум или минимум функции необходимо выполнение достаточного условия.

Пусть f(x) некоторая дифференцируемая на интервале (a;b) функция. Точка х0 принадлежит этому интервалу и f’(x0) = 0. Тогда:

1. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «плюса» на «минус», тогда точка х0 является точкой максимума функции.

2. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «минуса» на «плюс», тогда точка х0 является точкой минимума функции.

Для решения задачи разделим ее на следующие этапы:

  1. Рассмотрение задачи со стороны многомерного пространства.
  2. Рассмотрение задачи со стороны двухмерного пространства.
  3. Расчет количества точек пересечения.

Рассмотрение задачи со стороны многомерного пространства

Допустим прямые находятся в трехмерном пространстве, тогда они могут быть не параллельными друг другу в одной из плоскостей и отстоять друг от друга в другой плоскости. Это значит то, что такие прямые будут попарно не параллельны и не будут иметь точек пересечения.

Рассмотрение задачи со стороны двухмерного пространства

В двухмерном пространстве (плоскость) не параллельность двух прямых означает, что они обязательно имеют одну и только одну точку пересечения. По условию прямые не проходят через одну (общую) точку пересечения, следовательно, так как прямые попарно не параллельны, то каждая из них обязательно пересекает оставшиеся.

Расчет количества точек пересечения

При добавлении на плоскость новой не параллельной прямой будут добавляться точки пересечения с теми прямыми, которые уже нанесены на плоскости. Следовательно, две прямые дают 1 точку пересечения. Добавляя третью прямую, мы получаем еще 2 точки пересечения с уже нанесенными двумя прямыми; добавляя четвертую прямую получаем еще 3 точки пересечения; пятую - еще 4 точки пересечения. Таким образом, всего получаем:

1 + 2 + 3 + 4 = 10 точек пересечения

Ответ: 1) многомерное пространство - 0 точек пересечения; 2) двухмерное пространство - 10 точек пересечения.

Две прямые имеют одну точку пересечения. Добавив к ним ещё одну прямую, мы получим ещё 2 точки пересечения с каждой из этих двух прямых. Добавив ещё одну прямую, она даст дополнительно столько точек пересечения, сколько уже было прямых, т.е. ещё 3. И так далее. Каждая n-ая прямая даёт дополнительно (n-1) точек пересечения с (n-1) прямыми.

1 + 2 + 3 + 4 = 10

Всё вышесказанное справедливо в случае если ни одна из любых 3 прямых не имеет 1 общую точку пересечения.

Если же всё-таки прямые могут пересекаться в одной точке, но не все сразу, то тогда расположив 4 прямые звездой мы имеем 1 их точку пересечения, и, добавив 5-ю прямую получим ещё 4 точки. В этом случае у 5 прямых будет 5 общих точек пересечения.

Ответ: 10 точек пересечения будет образовано 5 не параллельными прямыми, когда более 2 прямых не пересекается в одной точке. Или же 5 точек пересечения если более двух прямых может пересекаться в одной точке.

Привет всем Хабра людям. Хочу представить уважаемым читателям пример, когда сухая и далекая от жизни в нашем понимании высшая математика дала не плохой практический результат.

Сначала немного воспоминаний
Было это в бытность мою студентом одного из технических Вузов в 90-е, курсе наверно втором. Попал я как-то на олимпиаду по программированию. И вот на этой самой олимпиаде и было задача: задать координаты треугольника, тестовой точки на плоскости, и определить принадлежит ли эта точка области треугольника. В общем, плевая задачка, но тогда я ее так и не решил. Но после задумался – над более общей задачей – принадлежность полигону. Повторюсь – была середина 90 –х, интернета не было, книжек по компьютерной геометрии не было, а были лекции по вышке и лаборатория 286 –х с турбо паскалем. И вот так совпали звезды, что как раз в то время когда я размышлял над проблемой, на вышке нам читали теорию комплексного переменного. И одна формула (о ней ниже) упала на благодатную почву. Алгоритм был придуман и реализован на паскале (к сожалению мой полутора гиговый винт погиб и унес в небытие этот код и кучу других моих юношеских наработок). После института я попал работать в один НИИ. Там мне пришлось заниматься разработкой ГИС для нужд работников института и собственной одной из задачей было определение попадания объектов в контур. Алгоритм был переписан на С++ и отлично зарекомендовал себя в работе.

Задача для алгоритма

Дано:
Г- замкнутая ломаная (далее полигон) на плоскости, заданная координатами своих вершин (xi,yi), и координата тестовой точки (x0,y0)
Определить:
принадлежит ли точка области D, ограниченной полигоном.

Вывод формул для последующего написания алгоритма ни в коем случае не претендует на математическую полноту и точность, а лишь демонстрирует инженерный (потребительский подход) к Царице полей наук.

Пояснение с рабоче-крестьянской инженерной точки зрения:
- граница Г наш заданный контур,
- z0 -тестируемая точка
- f(z) - комплексная функция от комплексного аргумента нигде в контуре не обращается в бесконечность.

Те есть, чтобы установить принадлежность точки контуру, нам необходимо вычислить интеграл и сравнить его со значением функции в данной точки. Если они совпадают, то точка лежит в контуре. Замечание: интегральная теорема коши гласит, что если точка не лежит в контуре, те подынтегральное выражение нигде не обращается в бесконечность, то интеграл равен нулю. Это упрощает дело – нужно лишь вычислить интеграл и проверить его на равенство нулю: равен нулю точка не контура, отличен - лежит в контуре.
Займемся вычислением интеграла. За f(z) примем простую функцию 1. Не нарушая общности можно за z0 принять точку 0 (всегда можно сдвинуть координаты).

Избавляемся от мнимой единицы в знаменателе подынтегральной части и расщепим интеграл на действительную и мнимую части:

Получилось два криволинейных интеграла II рода.
Вычислим первый

Выполнятся условие не зависимости интеграла от пути, следовательно, первый интеграл равен нулю и его вычислять не нужно.

С мнимой частью такой фокус не проходит. Вспоминаем, что наша граница состоит из отрезков прямых, получаем:

Где Гi- это отрезок (xi,yi)- (xi+1,y i+1)
Вычислим i-ый интеграл. Для этого запишем уравнение i-го отрезка в параметрическом виде

Подставим в интеграл

И после громоздких и нудных преобразований получим следующую прельстивую формулу:

Окончательно получаем

Алгоритм на C++:

template <class T>
bool pt_in_polygon(const T &test,const std::vector &polygon)
{
if (polygon.size()<3) return false;

Std::vector::const_iterator end=polygon.end();

T last_pt=polygon.back();

Last_pt.x-=test.x;
last_pt.y-=test.y;

double sum=0.0;

for (
std::vector::const_iterator iter=polygon.begin();
iter!=end;
++iter
{
T cur_pt=*iter;
cur_pt.x-=test.x;
cur_pt.y-=test.y;

double del= last_pt.x*cur_pt.y-cur_pt.x*last_pt.y;
double xy= cur_pt.x*last_pt.x+cur_pt.y*last_pt.y;

Sum+=
atan((last_pt.x*last_pt.x+last_pt.y*last_pt.y - xy)/del)+
atan((cur_pt.x*cur_pt.x+cur_pt.y*cur_pt.y- xy)/del)
);

Last_pt=cur_pt;

return fabs(sum)>eps;

T – тип точки, например:
struct PointD
{
double x,y;
};

Управление:
клик левой кнопкой – добавление новой точки контура
правой кнопкой - замыкание контура
левой с зажатым Shift-ом – перенос тестовой точки

Господа, кому интересно, привожу более быстрый алгоритм. Уже не мой.
Отдельное и огромное спасибо за статейку.
template bool pt_in_polygon2(const T &test,const std::vector &polygon)
{

Static const int q_patt= { {0,1}, {3,2} };

If (polygon.size()<3) return false;

Std::vector::const_iterator end=polygon.end();
T pred_pt=polygon.back();
pred_pt.x-=test.x;
pred_pt.y-=test.y;

Int pred_q=q_patt;

For(std::vector::const_iterator iter=polygon.begin();iter!=end;++iter)
{
T cur_pt = *iter;

Cur_pt.x-=test.x;
cur_pt.y-=test.y;

Int q=q_patt;

Switch (q-pred_q)
{
case -3:++w;break;
case 3:--w;break;
case -2:if(pred_pt.x*cur_pt.y>=pred_pt.y*cur_pt.x) ++w;break;
case 2:if(!(pred_pt.x*cur_pt.y>=pred_pt.y*cur_pt.x)) --w;break;
}

Pred_pt = cur_pt;
pred_q = q;

В двумерном пространстве две прямые пересекаются только в одной точке, задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками вы сможете находить точки пересечения парабол и других квадратичных кривых.

Шаги

Точка пересечения двух прямых

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

    • Если уравнения прямых вам не даны, на основе известной вам информации.
    • Пример . Даны прямые, описываемые уравнениями и y − 12 = − 2 x {\displaystyle y-12=-2x} . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12:
  1. Вы ищете точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

    • Пример . Так как y = x + 3 {\displaystyle y=x+3} и y = 12 − 2 x {\displaystyle y=12-2x} , то можно записать такое равенство: .
  2. Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если вы не можете это сделать, этого раздела).

    • Пример . x + 3 = 12 − 2 x {\displaystyle x+3=12-2x}
    • Прибавьте 2 x {\displaystyle 2x} к каждой стороне уравнения:
    • 3 x + 3 = 12 {\displaystyle 3x+3=12}
    • Вычтите 3 из каждой стороны уравнения:
    • 3 x = 9 {\displaystyle 3x=9}
    • Разделите каждую сторону уравнения на 3:
    • x = 3 {\displaystyle x=3} .
  3. Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

    • Пример . x = 3 {\displaystyle x=3} и y = x + 3 {\displaystyle y=x+3}
    • y = 3 + 3 {\displaystyle y=3+3}
    • y = 6 {\displaystyle y=6}
  4. Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

    • Пример: x = 3 {\displaystyle x=3} и y = 12 − 2 x {\displaystyle y=12-2x}
    • y = 12 − 2 (3) {\displaystyle y=12-2(3)}
    • y = 12 − 6 {\displaystyle y=12-6}
    • y = 6 {\displaystyle y=6}
    • Вы получили такое же значение «у», поэтому в ваших вычислениях ошибок нет.
  5. Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

    • Пример . x = 3 {\displaystyle x=3} и y = 6 {\displaystyle y=6}
    • Таким образом, две прямые пересекаются в точке с координатами (3,6).
  6. Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а ваше уравнение превратится в бессмысленное равенство (например, 0 = 1 {\displaystyle 0=1} ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
    • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а ваше уравнение превратится в строгое равенство (например, 3 = 3 {\displaystyle 3=3} ). В этом случае в ответе запишите, что две прямые совпадают.

    Задачи с квадратичными функциями

    1. Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x 2 {\displaystyle x^{2}} или y 2 {\displaystyle y^{2}} . Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    2. Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

      • Пример . Найдите точку (точки) пересечения графиков x 2 + 2 x − y = − 1 {\displaystyle x^{2}+2x-y=-1} и
      • Обособьте переменную «у» на левой стороне уравнения:
      • и y = x + 7 {\displaystyle y=x+7} .
      • В этом примере вам дана одна квадратичная функция и одна линейная функция. Помните, что если вам даны две квадратичные функции, вычисления аналогичны шагам, изложенным далее.
    3. Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

      • Пример . y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} и y = x + 7 {\displaystyle y=x+7}
    4. Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

      • Пример . x 2 + 2 x + 1 = x + 7 {\displaystyle x^{2}+2x+1=x+7}
      • Вычтите «x» из обеих сторон уравнения:
      • x 2 + x + 1 = 7 {\displaystyle x^{2}+x+1=7}
      • Вычтите 7 из обеих сторон уравнения:
    5. Решите квадратное уравнение. Перенеся все члены уравнения на его левую сторону, вы получили квадратное уравнение. Его можно решить тремя способами: при помощи специальной формулы, и .

      • Пример . x 2 + x − 6 = 0 {\displaystyle x^{2}+x-6=0}
      • При разложении уравнения на множители вы получите два двучлена, при перемножении которых получается исходное уравнение. В нашем примере первый член x 2 {\displaystyle x^{2}} можно разложить на х*х. Сделайте следующую запись: (x)(x) = 0
      • В нашем примере свободный член -6 можно разложить на следующие множители: − 6 ∗ 1 {\displaystyle -6*1} , − 3 ∗ 2 {\displaystyle -3*2} , − 2 ∗ 3 {\displaystyle -2*3} , − 1 ∗ 6 {\displaystyle -1*6} .
      • В нашем примере второй член – это х (или 1x). Сложите каждую пару множителей свободного члена (в нашем примере -6), пока не получите 1. В нашем примере подходящей парой множителей свободного члена являются числа -2 и 3 ( − 2 ∗ 3 = − 6 {\displaystyle -2*3=-6} ), так как − 2 + 3 = 1 {\displaystyle -2+3=1} .
      • Заполните пробелы найденной парой чисел: .
    6. Не забудьте про вторую точку пересечения двух графиков. Если вы решаете задачу быстро и не очень внимательно, вы можете забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

      • Пример (разложение на множители) . Если в уравнении (x − 2) (x + 3) = 0 {\displaystyle (x-2)(x+3)=0} одно из выражений в скобках будет равно 0, то все уравнение будет равно 0. Поэтому можно записать так: x − 2 = 0 {\displaystyle x-2=0} x = 2 {\displaystyle x=2} и x + 3 = 0 {\displaystyle x+3=0} x = − 3 {\displaystyle x=-3} (то есть вы нашли два корня уравнения).
      • Пример (использование формулы или дополнение до полного квадрата) . При использовании одного из этих методов в процессе решения появится квадратный корень. Например, уравнение из нашего примера примет вид x = (− 1 + 25) / 2 {\displaystyle x=(-1+{\sqrt {25}})/2} . Помните, что при извлечении квадратного корня вы получите два решения. В нашем случае: 25 = 5 ∗ 5 {\displaystyle {\sqrt {25}}=5*5} , и 25 = (− 5) ∗ (− 5) {\displaystyle {\sqrt {25}}=(-5)*(-5)} . Поэтому запишите два уравнения и найдите два значения «х».
    7. Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

      • Если графики пересекаются в одной точке, то квадратное уравнение раскладывается на одинаковые множители, например, (х-1) (х-1) = 0, а в формуле появляется квадратный корень из 0 ( 0 {\displaystyle {\sqrt {0}}} ). В этом случае уравнение имеет только одно решение.
      • Если графики вообще не пересекаются, то уравнение на множители не раскладывается, а в формуле появляется квадратный корень из отрицательного числа (например, − 2 {\displaystyle {\sqrt {-2}}} ). В этом случае в ответе напишите, что решения нет.


Статьи по теме: