Проектирование тепловой сети. Конструкции тепловых сетей

Нагретая вода из ТЭЦ или районной котельной насосами подается потребителям по наружным тепловым сетям для централизованного снабжения теплом промышленных предприятий, жилых домов и зданий общественного назначения.

Трассу тепловых сетей в городах и других населенных пунктах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов. Трасса тепловых сетей проходит между проезжей частью и полосой зеленых насаждений, Внутри микрорайонов и кварталов трасса тепловых сетей должна также проходить вне проезжей части дорог.

Для тепловых сетей в городах и других населенных пунктах предусматривается подземная прокладка: в непроходных и проходных каналах; в городских и внутри-квартальных коллекторах совместно с другими инженерными сетями и без устройства каналов (тепловые сети диаметром до 500 мм).

На территориях промышленных предприятий тепловые сети прокладывают на отдельно стоящих низких и высоких опорах или эстакадах. Допускается совместная надземная прокладка тепловых сетей с технологическими трубопроводами, независимо от параметров теплоносителя и параметров среды в технологических трубопроводах,


Наиболее часто тепловые сети прокладывают в непроходных каналах из сборного железобетона (), которые бывают одноячейковые, двухъячейковые и многоячейковые.

Рис. 142. Непроходные каналы КЛ: а - одноячейковые, б - двухъячейковые; 1 - лотковый элемент, 2 - песчаная подготовка, 3 - плита перекрытия, 4 - цементная шпонка, 5 - песок

Рис. 143. Прокладка тепловых сетей: а - в непроходном канале с битумоперлитовой изоляцией, б - бесканальная, Ц - циркуляционный трубопровод, Г - трубопровод горячей воды, X - трубопровод холодной воды, Т- обратный трубопровод системы отопления, Гп -ведающий трубопровод системы отопления

На , а показан один из вариантов внутри-квартальной прокладки тепловых сетей в непроходных каналах. В одном канале прокладываются трубопроводы системы отопления, в другом - трубопроводы системы горячего водоснабжения, между каналами непосредственно в грунте проходят трубопроводы холодного водопровода.

При прокладке тепловых сетей в зоне грунтовых вод наружные поверхности стен и перекрытий тепловых каналов следует покрывать битумной изоляцией, а также устраивать дренажи для понижения уровня грунтовых вод по трассе.

Тепловую изоляцию устраивают для трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб независимо от температуры теплоносителя и способов прокладки. Температура на поверхности теплоизоляционной конструкции трубопровода в технических подпольях и подвалах жилых и общественных зданий должна быть не более 45° С, а в тоннелях, коллекторах, камерах и других местах, доступных обслуживанию, не более 60° С.

В настоящее время промышленность выпускает индустриальную битумоперлитовую тепловую изоляцию теплопроводов, которую наносят на трубы методом прессования на заводе. Такую изоляцию изготовляют двух типов: для прокладки теплопроводов и водопроводных сетей бесканальным способом непосредственно в грунте и в непроходных каналах (см. ,а); для прокладки теплопроводов и водопроводных сетей в технических подпольях зданий, проходных каналах, а также внутри помещений.

Битумоперлитовая изоляция представляет собой смесь вспученного перлитового песка, нефтяного битума и пассивирующей добавки, которая надежно защищает трубопроводы от коррозии. Сверху битумоперлитовой изоляции наносят покровный слой из двух слоев стеклоткани, наклеенной на битумной мастике или латексе СКС-65.

Для сварки теплопроводов на трассе концы труб по 200 мм с каждой стороны должны быть не изолированы.


Бесканальная совмещенная прокладка трубопроводов тепловых сетей, горячего и холодного водоснабжения с битумоперлитной изоляцией ( , б) допускается во всех грунтах, кроме просадочных. При бесканальной прокладке трубопроводов в сухих грунтах с коэффициентом фильтрации Кф, равным 5 м/сут и более, дренаж не требуется. Во всех остальных случаях необходимо устраивать попутный дренаж. Бесканальную прокладку трубопроводов тепловых сетей и горячего водоснабжения используют на трассы. В местах поворотов и установки компенсаторов следует предусматривать камеры или каналы.

Глубина заложения трубопроводов с битумоперлитовой изоляцией на участках бесканальной прокладки должна быть не менее 0,8 м от спланированной поверхности земли до верха изоляции из условий прочности и защиты холодного водопровода от промерзания.

Проходной канал для большого числа труб изображен на рис. 144.

Рис. 144. Прокладка тепловых сетей в проходном канале:

1 - подающие трубопроводы, 2 - скользящая опора, 3 - стальная балка, 4 - обратный трубопровод, 5 - изоляция трубопроводов, 6-боковые стенки канала, 7 -лоток для дренажа

Такие каналы имеют большие поперечные сечения, что позволяет обслуживающему персоналу контролировать и ремонтировать трубопроводы. Проходные каналы устраивают главным образом на территориях больших промышленных предприятий и на выводах теплопроводов от мощных ТЭЦ. Стенки 6 проходных каналов делают из железобетона, бетона или кирпича; перекрытие проходных каналов, как правило,- из сборного железобетона.

В проходных каналах необходимо устраивать лоток 7 для стока воды. Уклон дна канала в сторону места отвода воды должен быть не менее 0,002. Опорные конструкции для труб, расположенных в проходных каналах, изготовляют из стальных балок 3, консольно заделанных

прямолинейных участках в стены или укрепленных на стойках. Высота проходного канала должна быть около 2000 мм, ширина канала - не менее 1800 мм.

Трубопроводы в каналах укладывают на подвижные или неподвижные опоры.

Подвижные опоры служат для передачи веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают Перемещение труб, происходящее вследствие изменения их длины при изменениях температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Рис. 145. Опоры: в - скользящая, б - катковая, в - неподвижная

Скользящее опоры ( , а) используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае прибегают к Катковым опорам ( , б), создающим меньшие горизонтальные нагрузки. Поэтому при прокладке труб больших диаметров в тоннелях на каркасах или на мачтах следует ставить катковые опоры.

Неподвижные опоры ( ,в) служат для распределения удлинений трубопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки труб от температурных напряжений на теплосети устанавливают гнутые и сальниковые компенсаторы.

Рис. 146. Гнутые компенсаторы

Гнутые компенсаторы () П- и S-образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для трубопроводов диаметром от 50 до 1000 мм. Эти компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных трубопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5-4,5 наружного диаметра трубы.

Гнутые П-образные компенсаторы располагают в нишах. Размеры ниши по высоте совпадают с размерами канала, а в плане определяются размерами компенсатора и зазорами, необходимыми для свободного перемещения компенсатора при температурной деформации. Ниши, где установлены компенсаторы, перекрывают железобетонными плитами.

Рис. 147. Сальниковые компенсаторы: а - односторонний, б -двусторонний; 1 - корпус. 2 -стакан, 3- фланцы

Сальниковые компенсаторы изготовляют односторонние ( , а) и двусторонние ( , б) на давление до 1,6 МПа для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность и оказывают незначительное сопротивление протекающей жидкости.

Сальниковые компенсаторы состоят корпуса 1 с фланцем 3 на уширенной передней части. В корпус компенсатора вставлен подвижный стакан 2 с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку сжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рис. 148.

Рис. 148. Камера для установки задвижек на тепловых сетях:

1 - ответвление подающего магистрального трубопровода, 2 - ответвление об» ратного магистрального трубопровода, 3 - камера, 4- параллельные задвижки, 5 - опоры трубопроводов, 6 - обратный магистральный трубопровод, 7 - подающий магистральный трубопровод

При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 я 2 сети к потребителям. Горячая вода подается в здание по трубопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 трубопроводы устанавливают на опоры 5 и покрывают изоляцией.

Стены камер выкладывают из кирпича, блоков или панелей, перекрытия - сборные из железобетона в виде ребристых или плоских плит, дно камеры - из бетона. Вход в камеры - через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таким расчетом, чтобы проходы между стенами и трубами были не менее 500 мм.

Пользовательского поиска

Тематические и околотематические публикации статей сайта.
В настоящем разделе сайта представлены публикации тематических статей по теплоснабжению и теплоэнергетике, а также, околотематических статей по строительству, производству и промышленному оборудованию.

Конструкции тепловых сетей.


Конструкции тепловых сетей состоят в основном из стальных трубопроводов, теплогидроизоляции, нанесенной на трубопроводы, и ограждающих теплопроводы сооружений.
К конструкциям трубопроводов относятся трубы, арматура, изделия, линейное оборудование.
Теплогидроизоляция может быть мастичной, формовочной, засыпной, оберточной и литой.
К строительным конструкциям, применяемым при прокладке тепловых сетей, относятся каналы (непроходные и проходные), камеры, шахты, ниши для П-образных компенсаторов, щитовые неподвижные опоры, дренажные насосные, различные сооружения при прокладках теплопроводов в туннелях, футлярах, на эстакадах и пр.

В связи с тем, что теплоноситель (пар или вода) с высокими температурой и давлением транспортируется только по стальным трубам, проложенным в основном в земле, возможны интенсивная коррозия труб, большие потери тепла, потери давления, значительное удлинение теплопровода под действием высокой температуры теплоносителя (и, следовательно, его перемещение), возникновение в связи с этим высоких напряжений в трубах.Это может привести к разрыву сварных соединений, нарушению герметичности фланцевых соединений, а также целостности запорно-измерительной арматуры и тепловой изоляции при трении ее о грунт или о строительные конструкции.

При строительстве тепловых сетей сооружают колодцы, камеры и павильоны над камерами для установки и эксплуатации запорно-измерительной арматуры, компенсирующих устройств и прочего линейного оборудования; прокладывают попутный фильтрующий дренаж; строят насосные; устанавливают ограждающие теплопровод конструкции, неподвижные и подвижные опоры (иногда еще и направляющие), опорные камни.

Металлические поверхности следует защищать противокоррозионным покрытием. Необходима тщательная тепловая изоляция трубопровода и гидроизоляция тепло-изоляционных и строительных конструкций.
Кроме стальных труб, используемых для устройства теплопроводов и футляров, на строительстве тепловых сетей применяют трубы и из других материалов: керамические - для дренажа; железобетонные - для футляров; асбестоцементные - для футляров и дренажа. На строительные конструкции, ограждающие теплопровод, воздействуют поверхностные и грунтовые воды, нагрузки от веса теплопроводов и оборудования, от веса грунта, от проходящего транспорта, сейсмические нагрузки, силы пучения грунтов, ветровые и температурные воздействия при надземных прокладках и т. д. Некоторые из перечисленных нагрузок, такие, как давление грунта на конструкции при подземной прокладке, нагрузки на основание строительных конструкций от веса теплопроводов, температурные воздействия и т. д., испытывает каждая конструкция. Другие нагрузки и влияния, такие, например, как сейсмические нагрузки, действие грунтовых вод и т. п., зависят от местных условий. Строительные конструкции, ограждая теплопровод от непосредственного воздействия перечисленных выше нагрузок и влияний окружающей среды, предохраняют тепловую изоляцию, линейное оборудование и трубы от преждевременного разрушения.

Форма ограждающих конструкций различна: прямоугольные и сводчатые каналы или трубы. В настоящее время такие конструкции выполняются в основном из бетона, железобетона и кирпича. Применяются и стальные трубы (футляры), обычно укладываемые на небольших по длине участках. Конструкции должны быть герметичными, долговечными, устойчивыми и в то же время дешевыми, не слишком тяжелыми и удобными при монтаже. Однако современные строительные конструкции тепловых сетей еще недостаточно совершенны и довольно громоздки. Наиболее прогрессивна бесканальная прокладка теплопроводов в армопенобетонной оболочке. Внедрение сборных конструкций из бетонных и железо-бетонных изделий дает возможность в большей степени использовать механизмы. Применяемые бетонные и железобетонные изделия недостаточно укрупнены, и монтаж сооружений состоит из множества операций, а ограждающие конструкции имеют большое количество швов, через которые грунтовые или ливневые воды проникают в каналы и к трубам. Чтобы сократить количество операций при монтаже и снизить многошовность, изделия укрупняют. Однако это создает трудности при ремонтных работах, поскольку приходится разрывать на значительной длине трассу для того, чтобы вскрыть канал, а также использовать краны большой грузоподъемности. При прокладке труб в асбестоцементной или бетонной оболочке снижается трудоемкость работ и уменьшается количество швов, хотя ремонт труб также довольно сложен.

Поверхностная или грунтовая вода, попадая в канал, преждевременно разрушает тепловую изоляцию и вызывает интенсивную коррозию труб. Во избежание этого канал должен быть герметичным. Поэтому все сопряжения строительных ограждающих конструкций тщательно промазывают цементным раствором, а стеновые блоки и плиты перекрытия укладывают на цементный раствор. Нарушить герметичность может и перекос строительных конструкций, в результате которого могут разойтись швы. Из условий герметичности швы строительных конструкций (плит перекрытия, стеновых блоков и плит основания) устраивают вразбежку.

Ограждающие конструкции должны быть не только герметичными, но и прочными. Прочность конструкций зависит от прочности изделий, составляющих конструкцию, от правильного подбора конструкций, а следовательно, правильного расчета нагрузок, которые испытывает конструкция в период эксплуатации, а также от выбора типа прокладок в зависимости от условий, в которых придется работать теплопроводу, и т. д.

Поскольку теплопроводы прокладываются прямолинейно, ограждающие их строительные конструкции должны быть также прямолинейны. Перекосы могут привести к давлению ограждающих конструкций на теплопровод и выводу его из строя. Размеры канала в чистоте должны соответствовать проектным. Для свободного перемещения труб при их температурных удлинениях углы поворотов трассы всегда выполняются в канале с более широким сечением, чем на прямолинейных участках.

Основание каналов может быть бетонным или железобетонным, сборным или монолитным. Бетонное или железобетонное основание создает более прочную, чем грунт, опору для строительных конструкций и предохраняет канал от проникания в него грунтовых вод снизу. Воспринимая вес строительных конструкций и грунта над каналом, нагрузки от транспорта, вес трубопровода с изоляцией и теплоносителем, бетонное или железобетонное основание рассредоточивает давление и тем самым снижается возможность осадки строительных конструкций в местах сосредоточенных нагрузок: под опорными камнями и под стенами канала.
Блоки днищ и железобетонные стены канала соединяют сваркой арматуры, выведенной из этих конструкций, места соединения омоноличивают. Плохое соединение может стать причиной осадки основания. При укладке сборного основания (без выведенной арматуры) плиты соединяют только цементным раствором. В слабых грунтах основание выполняют обычно монолитным, поскольку оно более устойчиво, чем сборное. Неровность основания может вызвать перекосы канала. Если между основанием строительных конструкций, ограждающих теплопровод, и подземными коммуникациями (газопроводом, канализацией, водопроводом, водостоком и пр.), пересекаемыми теплопроводом, расстояние меньше нормативного, возникает опасность разрушения коммуникаций в результате давления на них строительных конструкций тепловых сетей. В этих случаях следует устанавливать разгрузочные арки.

Невыполнение тех или иных условий при строительстве тепловых сетей может снизить прочность и устойчивость конструкций против расчетных. Например, вертикально установленные при монтаже стены канала наклоняются после засыпки. Это происходит в результате плохого уплотнения пазух между стенами канала и траншеи перед засыпкой.

Следует иметь в виду, что изменения в период строительства глубины заложения конструкций по сравнению с проектной могут вызвать необходимость применения конструкций других типов. Так, например, плиты перекрытия каналов и камер рассчитаны на определенную нагрузку, величина которой зависит и от высоты засыпки, поэтому при изменении глубины заложения потребуются плиты с другими показателями прочности. Неподвижность теплопровода относительно канала достигается установкой щитовых опор (между двумя компенсаторами). Суммарное осевое усилие на опору от двух труб достигает десятков, а порой и сотен тонн. Поэтому прежде всего опора должна быть прочной (бетон марки 150). Щитовые неподвижные опоры устанавливают в каналах и камерах (в пределах камер или в стенах).
Основание под опорой должно быть особенно прочным, поскольку осадка опоры может привести к аварии. Поэтому в месте установки щитовой неподвижной опоры подсыпку лучше всего выполнять из песка или песчаного грунта, политого водой и уплотненного. В газифицированных районах, где возможна утечка газа из проложенных в земле газопроводов, принимаются меры по защите зданий от проникания в них газа через каналы тепловых сетей. Для этого в каналах устанавливают герметические перегородки (приблизительно через каждые 100 м канала), разделяющие канал на отсеки и тем самым исключающие движение газа по каналу. В качестве герметических перегородок служат и щитовые неподвижные опоры (тогда необходимость в устройстве других герметических перегородок отпадает). Когда щитовые опоры устанавливают в местах, где требуется полная герметичность, отверстия для стока случайно попавших в канал вод, предусмотренные действующими нормалями, не устраивают. Для удаления воды из канала в этих случаях с той или другой стороны от неподвижной опоры (в зависимости от уклона канала) устанавливают люки, через которые вода, скапливающаяся у опор, удаляется насосами. Люки используют также для осмотра неподвижных опор или эксплуатации теплопровода. Если в месте входа теплопровода в здание не предусмотрена установка щитовой опоры, устанавливают газонепроницаемые сальники.

Дренаж тепловых сетей

При подземной прокладке теплопроводов во избежание проникновения воды к тепловой изоляции предусматривают искусственное понижение уровня грунтовых вод. Для этой цели совместно с теплопроводами прокла­дывают дренажные трубопроводы ниже основания канала на 200 мм. Дре­нажное устройство состоит из дренажной трубы и фильтрационного мате­риала обсыпки из песка и гравия. В зависимости от условий работы приме­няют различные дренажные трубы: для безнапорных дренажей - раструб­ные керамические, бетонные и асбестоцементные, для напорных - стальные и чугунные диаметром не менее 150 мм.

На поворотах и при перепадах заложений труб устраивают смотровые колодцы по типу канализационных. На прямолинейных участках такие ко­лодцы предусматривают не менее чем через 50 м. Если отвод дренажной воды в водоемы, овраги или в канализацию самотеком невозможен, строят насосные станции, которые размещают вблизи колодцев на глубине, зави­сящей от отметки дренажных труб. Насосные станции строят, как правило, из железобетонных колец диаметром 3 м. Станция имеет два отсека - ма­шинный зал и резервуар для приема дренажной воды.

Теплофикационные камеры предназначены для обслуживания обору­дования, установленного на тепловых сетях при подземной прокладке. Раз­меры камеры определяются диаметром трубопроводов тепловой сети и га­баритами оборудования. В камерах устанавливают запорную арматуру, сальниковые и дренажные устройства и др. Ширину проходов принимают не менее 600 мм, а высоту - не менее 2 м.

Теплофикационные камеры - сложные и дорогостоящие подземные сооружения, поэтому их предусматривают только в местах установки за­порной арматуры и сальниковых компенсаторов. Минимальное расстояние от поверхности земли до верха перекрытия камеры принимают равным 300 мм.

В настоящее время широко применяются теплофикационные камеры из сборного железобетона. В некоторых местах камеры выполняют из кир­пича или монолитного железобетона.

На теплопроводах диаметром 500 мм и выше применяют задвижки с электроприводом, имеющие высокий шпиндель, поэтому над заглубленной частью камеры сооружают надземный павильон высотой около 3 м.

Опоры. Для обеспечения организованного совместного перемещения трубы и изоляции при тепловых удлинениях применяют подвижные и не­подвижные опоры.

Неподвижные опоры, предназначенные для закрепления трубопрово­дов тепловых сетей в характерных точках, используют при всех способах прокладки. Характерными точками на трассе тепловой сети принято счи­тать места ответвлений, места установки задвижек, сальниковых компенса­торов, грязевиков и места установки неподвижных опор. Наибольшее рас­пространение получили щитовые опоры, которые применяют как при бес­канальной прокладке, так и при прокладке трубопроводов тепловых сетей в непроходных каналах.



Расстояния между неподвижными опорами определяют обычно расче­том труб на прочность у неподвижной опоры и в зависимости от величины компенсирующей способности принятых компенсаторов.

Подвижные опоры устанавливают при канальной и бесканальной про­кладке трубопроводов тепловой сети. Существуют следующие типы раз­личных конструкций подвижных опор: скользящие, катковые и подвесные. Скользящие опоры применяют при всех способах прокладки, кроме беска­нальной. Катковые используют при надземной прокладке по стенам зданий, а также в коллекторах, на кронштейнах. Подвесные опоры устанавливают при надземной прокладке. В местах возможных вертикальных перемеще­ний трубопровода используют пружинные опоры.

Расстояние между подвижными опорами принимают исходя из проги­ба трубопроводов, который зависит от диаметра и толщины стенки труб: чем меньше диаметр трубы, тем меньше расстояние между опорами. При прокладке в каналах трубопроводов диаметром 25-900 мм расстояние меж­ду подвижными опорами принимается соответственно 1,7-15 м. При над­земной прокладке, где допускается несколько больший прогиб труб, рас­стояние между опорами для тех же диаметров труб увеличивают до 2-20 м.

Компенсаторы применяют для снятия температурных напряжений, возникающих в трубопроводах при удлинении. Они могут быть гибкими П-образными или омега-образными, шарнирными или сальниковыми (осевы­ми). Кроме того, используют имеющиеся на трассе повороты трубопрово­дов под углом 90-120°, которые работают как компенсаторы (самокомпен­сация). Установка компенсаторов сопряжена с дополнительными капиталь­ными и эксплуатационными затратами. Минимальные затраты получаются при наличии участков самокомпенсации и применении гибких компенсато­ров. При разработке проектов тепловых сетей принимают минимальное число осевых компенсаторов, максимально используя естественную ком­пенсацию теплопроводов. Выбор типа компенсатора определяется конкрет­ными условиями прокладки трубопроводов тепловых сетей, их диаметром и параметрами теплоносителя.

Противокоррозионное покрытие трубопроводов. Для защиты тепло­проводов от наружной коррозии, вызываемой электрохимическими и хими­ческими процессами под воздействием окружающей среды, применяют противокоррозионные покрытия. Высоким качеством обладают покрытия, выполненные в заводских условиях. Тип противокоррозионного покрытия зависит от температуры теплоносителя: битумная грунтовка, несколько слоев изола по изольной мастике, оберточная бумага или шпатлевка и эпок­сидная эмаль.

Тепловая изоляция. Для тепловой изоляции трубопроводов тепловых се­тей используют различные материалы: минеральную вату, пенобетон, армо-пенобетон, газобетон, перлит, асбестоцемент, совелит, керамзитобетон и др. При канальной прокладке широко применяют подвесную изоляцию из мине­ральной ваты, при бесканальной - из автоклавного армопенобетона, асфаль-тоизола, битумоперлита и пеностекла, а иногда и засыпную изоляцию.

Тепловая изоляция состоит, как правило, из трех слоев: теплоизоляци­онного, покровного и отделочного. Покровный слой предназначен для за­щиты изоляции от механических повреждений и попадания влаги, т. е. для сохранения теплотехнических свойств. Для устройства покровного слоя используют материалы, обладающие необходимой прочностью и влагоне-проницаемостью: толь, пергамин, стеклоткань, фольгоизол, листовую сталь и дюралюминий.

В качестве покровного слоя при бесканальной прокладке теплопрово­дов в умеренно влажных песчаных грунтах применяют усиленную гидро­изоляцию и асбестоцементную штукатурку по каркасу из проволочной сет­ки; при канальной прокладке - асбестоцементную штукатурку по каркасу из проволочной сетки; при надземной прокладке - асбестоцементные полу­цилиндры, кожух из тонколистовой стали, оцинкованную или окрашенную алюминиевую краску.

Подвесная изоляция представляет собой цилиндрическую оболочку на поверхности трубы, изготовленную из минеральной ваты, формованных изделий (плит, скорлуп и сегментов) и автоклавного пенобетона.

Толщину слоя тепловой изоляции принимают согласно расчету. В ка­честве расчетной температуры теплоносителя принимают максимальную, если она не изменяется в течение рабочего периода сети (например, в паро­вых и конденсатных сетях и трубах горячего водоснабжения), и среднюю за год, если температура теплоносителя изменяется (например, в водяных се­тях). Температуру окружающей среды в коллекторах принимают +40°С, грунта на оси труб - среднюю за год, температуру наружного воздуха при надземной прокладке - среднюю за год. В соответствии с нормами проек­тирования тепловых сетей предельная толщина тепловой изоляции прини­мается исходя из способа прокладки:

При надземной прокладке и в коллекторах при диаметре труб 25-1400
мм толщина изоляции 70-200 мм;

В каналах для паровых сетей - 70-200 мм;

Для водяных сетей - 60-120 мм.

Арматуру, фланцевые соединения и другие фасонные части тепловых сетей, так же, как и трубопроводы, покрывают слоем изоляции толщиной, равной 80% толщины изоляции трубы.

При бесканальной прокладке теплопроводов в грунтах с повышенной коррозионной активностью возникает опасность коррозии труб от блуж­дающих токов. Для защиты от электрокоррозии предусматривают меро­приятия, исключающие проникание блуждающих токов к металлическим трубам, либо устраивают так называемый электрический дренаж или ка­тодную защиту (станции катодной защиты).



Статьи по теме: