Вихревой теплогенератор – новый источник тепла в доме. Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Откуда «растут ноги» у вихревого смесителя

Демон Максвелла

Физик Максвелл предложил миру интересную идею. Он провел такой мысленный эксперимент. Пусть имеется два сосуда с комнатным воздухом, соединенных друг с другом. Как известно, в обоих сосудах есть быстрые («горячие») молекулы, а есть менее подвижные холодные молекулы - все, как и описано в уравнении Максвелла. Предположим, что в месте соединения сосудов есть плотная дверка, у которой стоит сторож-швейцар. Сторож-швейцар пропускает в один избранный сосуд только быстрые молекулы, а обратно выпускает только медленные. Немного поработав, этот швейцар добьется того, что из избранного сосуда сбегут все медленные – холодные - молекулы, а соберутся быстрые - горячие. Процесс приведет к нагреванию одного сосуда и охлаждению другого.

(рисунок не мой – нашел в интернете)
Этого сторожа-швейцара окрестили физики демоном Максвелла и доказали невозможность его существования на основе постулата второго закона термодинамики. Этот постулат гласит о том, что мера энтропии (хаоса) может только возрастать (быть больше нуля) в закрытой замкнутой системе.

Трубка Ранка-Хильша

Потом появился Ранк с очень странным приборчиком – небольшой трубочкой, с одной стороны, которой выходил холодный воздух, а с другой – горячий. Никаких подогревателей или охладителей у трубки Ранка не было. А роль демона Максвелла играл обычный воздух, который не стоял в дверях как швейцар, а подавался внутрь с некоторой скоростью в трубку по касательной. Ранк не понимал, как его трубка работает, а другие ученые, похоже и вовсе не приняли странного изобретателя, так как факт существования такой трубки разрушал устоявшееся в науке представление. Хильш смог как-то улучшить работу этого приспособления, который сегодня известен как трубка Ранка-Хильша.


Рис. Схема трубки Ранка-Хильша. Голубая стрелка – подача воздуха по касательной. Темно-синяя стрелка – выход холодного воздуха. Красная стрелка – выход горячего воздуха.

Разница температур на выходе между двумя концами трубки Ранка может достигать 80 градусов при комнатной температуре и зависит от скорости подачи воздуха, как и от геометрии трубки.
Очень скоро выяснился экспериментальный факт: внутри трубки Ранка воздух ведет себя не как квазитвердое тело, как это думали. В трубке Ранка поток разделяется на два слоя, вращающиеся в разном направлении. Слой снаружи вращается в ту сторону, куда направлен воздух первоисточник. Слой по центру вращается в противоположную сторону. Что за чудеса!

С какой это стати и перепугу?...
Попробуем порисовать...
Нарисуем опять разрез трубки Ранка. По направлению голубой стрелки подаем воздух. Тогда в том месте, где нарисован синий круг у нас появится зона пониженного давления. В сторону этой зоны будет отклоняться поток - появится завихрение.

Ну у меня это так получилось нарисовать для одного вихря, ...пусть и неказисто...
Если объединить вихри в полный цикл, то картина может выглядеть так, как на рисунке Шауберга (которая рисовалась немецким ученым не для случая трубки Ранка). Синей стрелкой я нарисовал подачу воздуха-источника. На рисунке видно, как вихрь, пробегающий по контуру трубки, усиливает вращение во внешнем слое и закручивает поток в центре в противоположном направлении.

Рисунок Шауберга с моими цветными дополнениями

Есть предположение, что аналогичная схема присутствует в природном явлении торнадо. Во всяком случае, в центре торнадо, отмечают пониженную температуру, подобно тому, как это мы видим в трубке Ранка и вращается шнур торнадо в противоположную сторону от вращения периферии. Если это так, то нам должен быть интересен факт заниженного давления в центре торнадо. Это разряжение затягивает в себя как в воронку перефирию смерча.

Ведерко Ньютона

Похожие картинки получили датчане во время экспериментов с ведерком Ньютона (цилиндр у которого вращается дно, а стенки неподвижны).


При достаточно большой скорости вращения донышка на поверхности воды возникали вихревые образования. Получали вихревые образования в виде вращающихся многоугольников (от треугольников до шестиугольников). Когда ученые заменили воду этиленгликолем, в результате вращения на поверхности жидкости стали образовываться деформации треугольной формы, а на углах многоугольников образовывались вихри. Отчего так происходит – не известно, объяснить результаты сами экспериментаторы пока не могут. Но можно только отметить, что среда расслоилась и по центру появилось устойчивое вихревое образование – воронка правильной, чаще всего, пятиугольной формы.

Теоретические и практические предпосылки

Теория горения и взрыва выявила некоторые интересные закономерности.

1.Академик Н.Н.Семенов в 1926-1927 гг. создал тепловую теорию самовоспламенения горючих газов. При температурах, лежащих ниже температуры самовоспламенения, в газе с небольшой скоростью идёт химическая реакция, а теплоотвод через стенку в наружную среду компенсирует теплоприход от реакции. С увеличением температуры скорость реакции растёт и создаются условия, когда теплоотвод не успевает компенсировать теплоприход и развивается тепловая лавина.

2.«Опытные данные и теоретическое рассмотрение свидетельствуют о том, что при распространении пламени реакция идет в каждый момент времени в сравнительно (по сравнению с размерами камер сгорания) тонком слое - зоне реакции. В непосредственной близости от зоны реакции, также в тонком слое, происходит разогрев несгоревшей смеси. Поэтому в первом приближении распространение пламени можно представить себе так: имеются две области - несгоревшего газа и продуктов реакции, разделенные поверхностью горения, толщиной которой можно пренебрегать и рассматривать ее как геометрическую поверхность, движущуюся относительно газа с известной скоростью - нормальной скоростью распространения пламени». Зельдович Я.Б на примере реакции водорода с кислородом обнаружил три предела воспламенения, которые проиллюстрировал в виде диаграммы «давление - температура»

Рис 1.0
«Пределы воспламенения стехиометрической смеси водорода с кислородом приведены на рис. 1.0. Если начальным давлению и температуре смеси отвечает точка, лежащая справа от кривой ABCD4 то происходит воспламенение; участок AB соответствует первому, ВС - второму и CD - третьему пределам воспламенения. Область между первым и вторым пределами называют полуостровом воспламенения.»

3. «Достаточно быстрое сгорание, при котором скорость пламени достигает сотен м/сек, происходит при турбулизации газовой смеси и соответственно, при турбулизации фронта пламени. Турбулизация вызывает значительное разрастание фронта пламени, ускорение теплообмена между продуктами сгорания и исходной смесью и, соответственно, горения.»

4. Академик М. А. Стырикович описал такие установи для сжигания угля


«В топке одновременно идут три взаимосвязанных процесса: гидродинамический процесс подачи со значительными скоростями (часто в закрученном виде) потоков воздуха и угольной пыли, процесс воспламенения. Обычно горелки располагаются на двух противоположных стенах топочной камеры в несколько ярусов (см. рис. 1), так что приходится учитывать и взаимодействие отдельных горелок между собой. При таком их расположении очень трудно обеспечить равномерность температуры по всему громадному сечению топки, а любая неравномерность может привести к шлакованию ширм или конвективных поверхностей. Более равномерное распределение температуры достигается при размещении горелок тангенциально по углам топки - так, что они создают в ней общий закрученный вихрь (рис. 2). Здесь уже не только каждая отдельная горелка порождает вихревой поток, но и вся совокупность горелок образует единый вихрь. Очевидно, что такую сложную геометрию потока рассчитать и реализовать весьма непросто»

5. широкое распространение на нефтепромыслах нашли вихревые излучатели (генераторы волн давления). Внешне генератор похож на трубку Ранка, но в отличие от трубки Ранка у него нет обратного выхода, а прямой выход открытый


"Генератор представляет собой корпус с цилиндрической камерой (камерой завихрения), с тангенциальным каналом (одним или несколькими) для подачи рабочей жидкости и соплом для выхода рабочей жидкости. Генератор работает следующим образом . При подаче жидкости через тангенциальное отверстие 2 диаметром d (см. рис. 1.3) внутри камеры завихрения 3 и выходного сопла 4 генератора образуется система двух закрученных потоков. По периферии камеры движется так называемый первичный вихрь (I), имеющий в попе- речном сечении форму кольца с наружным радиусом R = D/2 и внутренним rm. Этот поток состоит из рабочей жидкости, подаваемой в генератор. Приосевую область вихревой камеры занимает вторичный вихрь (II), вращающийся как квазитвёрдое тело. Он образуется вследствие вовлечения в движение первичным потоком жидкости из окружающей среды, в которую происходит истечение жидкости из генератора. Опыт показывает, что в случае незатопленного истечения струи жидкости (например, при истечении её в газообразную среду) движение устойчиво и пульсации давления и скорости в потоке отсутствуют. Если же истечение закрученной струи затопленное, т.е. рабочая жидкость в вихревой камере и вещество окружающей среды имеют одну и ту же физическую природу, то в потоке генерируются регулярные пульсации давления, частота и амплитуда которых зависит от скорости истечения и геометрических параметров камеры завихрения, её конструкции и формы сопла. В окружающей среде пульсации давления фиксируются как звук дискретного тона и значительной интенсивности."
"Причиной звуковых колебаний является прецессионное вращательное движение вторичного вихря"

Вихревой шнур
В печах с ВС небольшого размера и формы пятиугольника или окружности в плане можно наблюдать зарождение вихревого горящего шнура по центру, вращающегося, как и центральный поток в трубке Ранка в противоположную от направления подачи воздуха сторону. Но это бывает при большой скорости движения газов по трубе и при наличии не более одного-двух щелевых сопел, обеспечивающих большие скорости втекания в ВС. Несколько слов об этом.

Существенную роль в ВС играет степень турбулентности, которую можно оценить числом Рейнольдса.
Re=v*L/n
Где
Re – безразмерное число Рейнольдса,
v- скорость потока
L- характерный линейный размер
n - кинетическая вязкость
Когда Re > 2320 движение идет с образованием завихрений.
Если принять n= 0.0015м2\с для воздуха при Т=270К
L=0.23м, то получим скорость при которой начинается турбулентность
v=0.15м\с.
Если скорость подачи через вихревое сопло-щель > 0.15м\с при данных допущениях, то ламинарный поток начинает переходить в турбулентный. Этого, правда, еще недостаточно, чтоб активно проявился вихревой эффект. Для этого, поток должен обладать достаточной скоростью, чтобы образовался вихрь диаметром сравнимым с радиусом ВС (за радиус ВС принимаем наименьшее расстояние от центра ВС до внутренней поверхности стенки ВС).
Сделаем небольшие оценки.
Согласно шкале Фудзиты-Пирсона, минимально возможным вихрем в природе являются вихри с линейной скоростью v при вращении воздуха в воронке порядка 18 м\с. Давайте рассмотрим такую схему:

Рис. расположение ВС для появления вихревого шнура, рисунок в плане. 1 – топливник, 2 –вихревое сопло, 3 – ВС

Примем размеры топливника 250 х 500 х 600.
Вихревую щель в узком месте возьмем 10 мм, высотой 124 мм.
Пусть имеется у печи дымовая труба цилиндрической формы d= 120.
Оценим скорость в трубе обычным диапазоном 2-8м\с.
Тогда скорость в узком месте сопла из уравнения струи будет оценена в диапазоне:
Vmin= 2*3.14*sqw(60) / (124*10) = 18 м\с
Vmax = 72 м\с
Полученный диапазон 18-72 м\с соответствует категориям F0- F3 по шкале Фудзиты-Пирсона.
Реальные турбулентности и трение в сопле могут занизить линейную скорость, но тем не менее у нас есть все теоретические предпосылки наблюдать в ВС такой конструкции небольшое торнадо с горящим шнуром по центру с соответствующими звуковыми эффектами.

Задачи получить вихревой шнур в печи не стоит. И, естественно, торнадо в бытовой печи это уже излишне, хотя и зрелищно.

Нам интересен сам факт перемешивания, турбулентности и появления зон с другим давлением и температурой, что заставляет пройти реакцию горения максимально полно.

воплощение
Все эти размышления навели на мысль изначально сделать Вихревой Смеситель (ВС) пятиугольной формы.
ВС в этой конструкции использовалась в камере дожига (КД).

Но эта форма для ВС совсем не обязательна, здесь может быть и квадрат и прямоугольник, или окружность в плане.
На сегодняшний день опробован ВС в обычном топливнике прямоугольной формы с вихревыми щелями по краям.


ВС в составе КД может находится в центре топливника.

Рис. В этом экзотическом варианте предполагается наличие загрузочных дверок по сторонам, а ВС начинается ниже топливника (с подачей воздуха через одну вихревую щель

Также можно использовать ВС не только для КД, но и для топливника.

Рис. здесь топливо закладывается в ВС, загрузочная дверка предполагается сверху или сбоку.

Также легко ВС применяется в КС и для трубы.


Рис. Развязка перекресток для случая встречных четырех потоков. Вид в плане, труба в центре

Одно существенное замечание.
В ВС не все равно в какую сторону закручивается вихрь – это необходимо учитывать при проектировании вихревых щелей сопел. Правый винт и левый винт не равнозначны здесь и газовая смесь ведет себя совершенно по-разному. Это свойство присуще всем вихрям Бенара (или правильно назвать Бенарда, но в России почему-то Benard превратился в Бенара).

1 случай.
Если закручивать поток с внешней стороны (стороны стенки) вихревыми соплами правым винтом (смотреть если сверху, то движение против часовой стрелки), то тогда центральный поток, вращающийся по стрелке будет подниматься вверх, а на периферии опускаться вниз.

Рис. 1 случай

2 случай.
Если закручивать периферию левым винтом – по часовой стрелке, то подниматься будет внешний слой, а средний, вращаясь против часовой стрелки, будет опускаться.

Рис. 2 случай

Какая разница?
В нашей вселенной преобладает правый винт и это самая устойчивая в природе система – от структуры атома и молекулы ДНК, до вихря торнадо и скоплений звезд. Встречающиеся природные вихри Бенара, похоже, все правовинтовые.
По этой причине, когда я конструировал первые ВС, делал их с правой закруткой. Но к чему это приводит? Внутренний средний слой при таком способе начинает подниматься, а внешний – опускаться, иногда это даже приводило к тому, что дым мог отмахнуть через дверку - если ВС в топливнике. Чтоб этого не происходило, приходится идти на ухищрение и делать воздушный замок у проема- слева от дверки межфутеровочное пространство не заполняется и воздух подается на дверку.
Если реализовывать 2 способ в ВС, то преферийный слой поднимается, а центральный опускается и тогда нет никакой отмашки без всяких фокусов. И этот способ интересен еще одной особенностью - правовинтовой вихрь Бенара менее устойчив и он разрушается в зоне перехода в КС, отдавая свою энергию потоку.

ЛИТЕРАТУРА

1 Зельдович Я.Б. , Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва - М.: Наука, 1980
2. М.А.Стырикович. Проблемы сжигания твердого топлива в большой энергетике
3. В.И.Говоров, В.М.Плотников, Е.В.Каратай – г.Темиртау: КГИУ, 2007 г. Теоретические основы горения и взрыва (7.4. Факторы ускорения горения)
4. Н.Н. Семёнов. Цепные реакции. Л.: ОНТИ, 1934; 2-е изд. М.: Наука, 1986;
5.Неволин В.Г. Опыт применения звукового воздействия в практике нефтедобычи Пермского края. – Пермь, 2008.

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов - это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» - это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор - диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор . Дисковый активатор - это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

Иллюстрация Описание сферы применения

Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке - 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке - 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении - в котельной, подвале и т.п


Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста - достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент - это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

Иллюстрации Общее описание конструкций кавитационных теплогенераторов

Общий вид агрегата . На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме - это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами . На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.


Теплогенератор с встречными резонаторами . На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

Иллюстрации Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе . На этой схеме можно видеть следующие детали:

1 - корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 - вал, на котором закреплен роторный диск;

3 - роторное кольцо;

4 - статор;

5 - технологические отверстия проделанная в статоре;

6 - излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.


Схема совмещения роторного кольца (3) и статора (4) . На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу


Поворотное смещение роторного кольца и статора . На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу. Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель. При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Вихревой двигатель — это один из источников альтернативной энергии для отопления дома.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

Установка насоса вихревого генератора теплоты и сооружение корпуса

Кожух данного устройства изготавливается в виде цилиндра, который должен закрываться со сторон каждой основы. На каждом боку расположены сквозные отверстия. Используя их, можно подключить вихревой теплогенератор своими руками к системе обогрева дома. Основная особенность такого изделия заключается с том, что внутри кожуха, возле входного отверстия устанавливается жиклер. Данное приспособления должно подбираться индивидуально для каждого отдельно взятого случая.

Схема вихревого двигателя.

Процесс производства включает в себя следующие пункты:

  • отрезание трубы необходимого размера (около 50-60 см);
  • нарезка резьбы;
  • изготовление пары колец из трубы того же диаметра с длиной примерно 50 мм;
  • приваривание крышек к местам, где не нарезалась резьба;
  • вырезание двух отверстий в центре каждой крышки (одно для подключения патрубка, второе – для жиклера);
  • сверление фаски рядом с жиклером для получения форсунки.

Установка насоса вихревого двигателя проводится после подбора агрегата необходимой мощности. При покупке стоит придерживаться двух правил. Первое – устройство должно быть центробежным. Второе – выбор будет целесообразным лишь в случае, когда устройство будет оптимально функционировать в паре с установленным электродвигателем.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: « .

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Подведение итогов

Если все правила изготовления конструкции были учтены, то вихревой генератор прослужит долгое время. Не стоит забывать, что от грамотной установки прибора тоже зависит многое в системе отопления. В любом случае изготовление такой конструкции из подручных средств обойдется дешевле приобретения готового приспособления. Однако для оптимального функционирования устройства следует ответственно подойти к процессам изготовления корпуса и обшивки тепловой изоляции.



Статьи по теме: