Расчет теплопотерь здания – готовимся к зимнему периоду. Как самостоятельно сделать расчет теплопотерь здания

Каждое здание, независимо от конструктивных особенностей, пропускает тепловую энергию через ограждения. Потери тепла в окружающую среду необходимо восстанавливать с помощью системы отопления. Сумма теплопотерь с нормируемым запасом – это и есть требуемая мощность источника тепла, которым обогревается дом. Чтобы создать в жилище комфортные условия, расчет теплопотерь производят с учетом различных факторов: устройства здания и планировки помещений, ориентации по сторонам света, направления ветров и средней мягкости климата в холодный период, физических качеств строительных и теплоизоляционных материалов.

По итогам теплотехнического расчета выбирают отопительный котел, уточняют количество секций батареи, считают мощность и длину труб теплого пола, подбирают теплогенератор в помещение – в общем, любой агрегат, компенсирующий потери тепла. По большому счету, определять потери тепла нужно для того, чтобы отапливать дом экономно – без лишнего запаса мощности системы отопления. Вычисления выполняют ручным способом либо выбирают подходящую компьютерную программу, в которую подставляют данные.

Как выполнить расчет?

Сначала стоит разобраться с ручной методикой – для понимания сути процесса. Чтобы узнать, сколько тепла теряет дом, определяют потери через каждую ограждающую конструкцию по отдельности, а затем складывают их. Расчет выполняют поэтапно.

1. Формируют базу исходных данных под каждое помещение, лучше в виде таблицы. В первом столбце записывают предварительно вычисленную площадь дверных и оконных блоков, наружных стен, перекрытий, пола. Во второй столбец заносят толщину конструкции (это проектные данные или результаты замеров). В третий – коэффициенты теплопроводности соответствующих материалов. В таблице 1 собраны нормативные значения, которые понадобятся в дальнейшем расчете:

Чем выше λ, тем больше тепла уходит сквозь метровую толщину данной поверхности.

2. Определяют теплосопротивление каждой прослойки: R = v/ λ, где v – толщина строительного или теплоизоляционного материала.

3. Делают расчет теплопотерь каждого конструктивного элемента по формуле: Q = S*(Т в -Т н)/R, где:

  • Т н – температура на улице, °C;
  • Т в – температура внутри помещения,°C;
  • S – площадь, м2.

Разумеется, на протяжении отопительного периода погода бывает разной (к примеру, температура колеблется от 0 до -25°C), а дом обогревается до нужного уровня комфорта (допустим, до +20°C). Тогда разность (Т в -Т н) варьируется от 25 до 45.

Чтобы сделать расчет, нужна средняя разница температур за весь отопительный сезон. Для этого в СНиП 23-01-99 «Строительная климатология и геофизика» (таблица 1) находят среднюю температуру отопительного периода для конкретного города. Например, для Москвы этот показатель равен -26°. В этом случае средняя разница составляет 46°C. Для определения расхода тепла через каждую конструкцию складывают теплопотери всех ее слоев. Так, для стен учитывают штукатурку, кладочный материал, внешнюю теплоизоляцию, облицовку.

4. Считают итоговые потери тепла, определяя их как сумму Q внешних стен, пола, дверей, окон, перекрытий.

5. Вентиляция. К результату сложения добавляется от 10 до 40 % потерь на инфильтрацию (вентиляцию). Если установить в дом качественные стеклопакеты, а проветриванием не злоупотреблять, коэффициент инфильтрации можно принять за 0,1. В отдельных источниках указывается, что здание при этом вообще не теряет тепло, поскольку утечки компенсируются за счет солнечной радиации и бытовых тепловыделений.

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

2. Потери тепла через пол.

Общая площадь: S = 8*10 = 80 м2.

Вычисляется теплосопротивление трехслойного пола.

  • R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
  • R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
  • R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
  • R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.

Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.

3. Потери тепла через потолок.

Площадь потолочной поверхности равна площади пола S = 80 м2.

Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот. = R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.

Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.

4. Теплопотери через окна.

Площадь остекления: S = 4*1,2*1 = 4,8 м2.

Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:

  • R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
  • На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.

Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.

Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.

Чтобы безошибочно посчитать, сколько тепла теряет здание, используют онлайн калькулятор теплопотерь. Это компьютерная программа, в которую вводятся не только перечисленные выше данные, но и различные дополнительные факторы, влияющие на результат. Преимуществом калькулятора является не только точность расчетов, но и обширная база справочных данных.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2 °C/Вт

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть .

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля:

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна: значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при?T = 40 °С

стены: панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Многие, строя загородный дом, забывают о приближении зимних холодов, из-за чего расчет теплопотерь здания делают в спешке, и в итоге отопление не создает комфортный микроклимат в помещениях. А ведь сделать дом теплым не сложно, нужно лишь учесть ряд нюансов.

На чем основывается расчет теплопотерь здания

Таким свойством, как теплопроводность, обладает любой материал, различается лишь уровень термического сопротивления, то есть пропускная способность. Из любого дома, даже с устроенной по всем правилам термоизоляцией, тепло уходит через окна, двери, стены, пол, потолок (крышу), а также через вентиляцию . При разнице внешней и внутренней температур обязательно возникает так называемая «точка росы», со средним значением. И только от микроклимата в помещениях, материала и толщины стен, а также характеристик термоизоляции зависит, где окажется эта точка: внутри, снаружи или непосредственно в стене, а также какая в ней будет температура.

Если ответственно подходить к задаче и выполнять расчет теплопотерь здания по всем правилам, это займет у вас немало часов и придется составить множество формул, вычисления займут целую тетрадь. Поэтому определим интересующие нас показатели упрощенным методом, либо обратившись за помощью к СНиП и ГОСТам. И, поскольку решено делать подсчеты не слишком углубленно, оставим в стороне определение среднегодовых температуры и влажности по самой холодной пятидневке за несколько лет, как того требуется по СНиП 23-01-99. Просто отметим наиболее морозный день за последний зимний сезон, допустим, это будет -30 о С. Также не будем принимать во внимание среднесезонную скорость ветра, влажность в регионе и длительность отопительного периода.

Калькулятор теплопотерь здания

Укажите размеры и типы стен.
На улице
средняя температура за день
Выберите значение -40°C -30°C -20°C -15°C -10°C -5°C 0°C +5C +10C
Внутри
средняя температура за день
Стены
Только выходящие
на улицу стены!

Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена

Комнаты

Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия

Тепловые потери:
Через стены: - кВт Через окна: - кВт Через верх: - кВт Через низ: - кВт Через вентиляцию: - кВт Итого: -кВт Нажмите на кнопку для расчёта

Распечатать

Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха t в, его влажности φ в и движения v в, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода t р, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура t п, с помощью формулы [t п = (t р + t в)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.

Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96

Период года Помещение

Температура внутреннего воздуха t в, °С

Результирующая температура t п, °С

Относит. влажность внутреннего воздуха φ в, %

Скорость движения воздуха v в, м/с

Холодный Жилая комната
То же, в районах с t 5 от -31 °С
Кухня
Туалет
Ванная, совмещенный санузел
Помещение для отдыха и учебных занятий
Межквартирный коридор
Вестибюль, лестничная клетка
Кладовая
Теплый Жилая комната

Буквами НН обозначаются ненормируемые параметры.

Делаем теплотехнический расчет стены с учетом всех слоев

Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение . Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как Σ R i (здесь буква i определяет номер слоя).

Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: , где R в и R н соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие . Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r , определяемом формулой .

Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r 1 , отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r 1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.

Значение коэффициента внутренних крепежей уменьшается по мере возрастания толщины слоя утеплителя.

В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r 1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r 1 как 0,75-0,88. Если внутренний слой также из кирпича, то r 1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы и вентиляция дают значение r 2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.

Некоторые сведения о том, как рассчитать толщину утеплителя

Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать R o , затем узнать требуемое термическое сопротивление R req по следующей таблице (сокращенный вариант).

Требуемые значения сопротивления теплопередаче ограждающих конструкций

Здание / помещение

Градусо-сутки отопительного периода D d , °С·сут

Приведенное сопротивление теплопередаче ограждений R req , м 2 ·°С/Вт

стены

покрытия

чердачного перекрытия и перекрытия над холодными подвалами

окна и балконной двери, витрины и витража

1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат
а
b
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами
а
b

Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м 2 ·°С/Вт рассчитывается по формуле R req = a D d + b . Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.

Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче R o усл. тр = R req /r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя R ут тр = R o усл. тр – (R в + Σ R т. изв + R н), здесь Σ R т. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δ ут = R ут тр λ ут (м), причем λ ут берется из таблицы Д.1 СП 23-101-2004 , и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.

Можно заказать в специализированной фирме. Правда, стоит это недешево, да и проверить результаты будет невозможно. Совсем другое дело, если вы научитесь анализировать потери тепла в доме самостоятельно. Тогда и платить никому не придется, и вы будете на сто процентов уверены в своих расчетах.

Количество тепла, теряемое зданием за определенную единицу времени, и называется теплопотерями. Величина эта непостоянная. Зависит она от температуры, а также теплозащитных свойств ограждающих конструкций (к ним относятся стены, окна, перекрытия и т.п.). Существенные теплопотери происходят и из-за сквозняков - попадающий внутрь помещения воздух называют по-научному инфильтрацией. А прекрасный способ бороться с ними - установка современных стеклопакетов. Расчет теплопотерь обязательно должен учитывать все эти факторы.

Все строительные и отделочные материалы различаются по своим характеристикам и, следовательно, теплотехническим качествам. Их структура часто неоднородна, состоит из нескольких слоев, а иногда имеет замкнутые воздушные прослойки. Вычислить теплопотери всей этой конструкции можно, сложив показатели для каждого из слоев.

Основной характеристикой материалов в наших расчетах будет показатель Именно он покажет, сколько тепла потеряет конструкции (к примеру, 1 м 2) при определенном температурном перепаде.

Имеем следующую формулу: R=DT/Q

· DT - показатель разности температур;

· Q - количество Вт/м 2 тепла, которое теряет конструкция;

· R - коэффициент сопротивления теплопередачи.

Все эти показатели легко вычислить, пользуясь СНиП. В них прописана информация касательно большинства традиционных строительных материалов. Что же касается современных конструкций (стеклопакетов, гипсокартона и прочих), требуемые данные можно узнать у производителя.

Таким образом можно сделать расчет теплопотерь для каждой Особое внимание следует уделить наружным стенам, чердачным перекрытиям, участкам над холодными подвалами и неотапливаемыми этажами. Добавочные потери тепла происходят через двери и окна (в особенности выходящие на север и восток), а также наружные ворота при отсутствии тамбура.

Расчет теплопотерь здания производят в отношении самого неблагоприятного периода в году. Другими словами, берется самая морозная и ветреная неделя. Суммировав таким образом теплопотери, можно определить требуемую мощность всех отопительных приборов в помещении, необходимых для его комфортного обогрева. Эти расчеты помогут также определить «слабое звено» в системе теплоизоляции и принять дополнительные меры.

Сделать расчет можно и по общим, усредненным показателям. К примеру, для одно- и двухэтажных зданий при минимальной температуре воздуха -25°С тепла на один квадратный метр потребуется 213 Вт. Для зданий с качественным этот показатель снижается до 173 Вт, а то и меньше.

Исходя из всего вышесказанного, можно сказать, что экономить на качественной теплоизоляции не следует. В условиях постоянного повышения цен на энергоносители грамотное утепление и вентиляция конструкций приводят к значительной выгоде.

Расчет системы отполения, горячего водоснабжения и вентиляции

Пояснительная записка к курсовой работе по дисциплине

«Отопление, вентиляция и кондиционирование»

Выполнил:

студент группы 31 Е

Захарец А. В.

Руководитель

ст. преподаватель кафедры Т

Кокшаров М.В.

В соответствии вариантом необходимо:

1)Произвести расчёт тепловых потерь здания.

3)Произвести расчёт системы горячего водоснабжения.

4)Начертить изометрическую схему системы горячего водоснабжения, указать диаметры трубопроводов

5)Произвести расчёт системы вентиляции, определить количество тепла на нагрев вентилируемого воздуха.


УДК 621.313.333

Курсовая работа содержит 28 страниц, 7 рисунков, 4 таблиц, 5 источников, 2 приложения.

Тепловые потери, ограждающие конструкции, система отопления, радиатор, теплоноситель, инфильтрация, ГВС, стояк, лежак, трубопровод, вентиляция.

Объектом исследования является двухэтажное жилое здание.

Цель работы – освоение и закрепление методов расчета тепловых потерь здания, систем отопления, ГВС, вентиляции.

Методы исследования – расчётные и графические.

Курсовая работа выполнена в текстовом редакторе Microsoft Word 2007


Введение. 5

1 Исходные данные. 6

2 Расчёт тепловых потерь здания. 7

2.1 Заполнение таблицы.. 7

2.2 Расчет диаметров трубопроводов системы отопления. 20

3 Расчет системы ГВС.. 23

3.1 Определение расчетных расходов воды в системах ГВС.. 23

3.2 Определение диаметров трубопровода системы ГВС.. 23

4 Расчет системы вентиляции. 26

4.1 Расход приточного воздуха. 26

4.2 Определение расхода тепла на нагрев вентилируемого воздуха. 26

Заключение. 28

Библиографический список. 29

Приложение А

Приложение Б


Введение

Расчет теплопотерь является важнейшим этапом проектирования систем отопления, ГВС и вентиляции.



Для определения тепловой мощности, покрывающей максимальную нагрузку на систему отопления, необходимо знать теплопотери здания в самую суровую расчетную часть холодного периода года. Для решения вопроса о соответствии уровня теплопотребления системой отопления здания современным требованиям, особенно учитывая проблему энергосбережения, необходимо определить теплопотери здания за весь отопительный период.

Существуют различные подходы к выбору расчетных значений коэффициентов теплопроводности строительных материалов. При этом тщательность в выборе значения данного коэффициента крайне важна. Необходимо также правильно оценивать значения коэффициентов теплообмена на поверхностях ограждений, особенно коэффициента теплоотдачи на внутренней поверхности, т.к. при завышенном его значении будет завышена и расчетная температура на внутренней поверхности, например, окна. При определении теплопотерь здания важна правильная оценка коэффициентов теплопередачи ограждающих конструкций.

В работе представлены расчеты теплопотерь здания и потребности в теплоте на нагревание инфильтрационного воздуха, рассчитаны и спроектированы системы отопления, ГВС и вентиляции.

Целью данной работы является получение знаний, навыков расчета и проектирования систем отопления, ГВС и вентиляции.

Исходные данные

Рисунок 1.1 – План первого(второго) этажа здания

Таблица 1.1 – Исходные данные


Расчёт тепловых потерь здания

При тщательном подходе к устройству системы отопления дома необходимо начать с расчета теплопотерь здания. Потери тепла в доме происходят через стены, окна, входные двери, крышу и пол первого этажа. Тепло также уходит вместе с воздухом при инфильтрации через щели в конструкциях, окна и двери.

Для удобства расчёта и представления информации итогом второго раздела данной курсовой работы будет заполненная таблица. Для каждого помещения будет определено или посчитано 25 параметров. Расчёт производится в соответствии со СНиП 23-02-2003 «Тепловая защита зданий».

Заполнение таблицы

2.1.1 Наименование помещения

В данном столбце указывается номер помещения по плану здания. Обычно нумерация помещений начинается от входа и идёт по часовой стрелке. Первая цифра – номер этажа, остальные – номер помещения.

Рисунок 2.1 – План первого этажа задания

Рисунок 2.2 – План второго этажа задания.

2.1.2 Температура наружного воздуха.

В данном столбце в соответствии со СНиП 23-01-99 "Строительная климатология" указывается температура воздуха наиболее холодной пяти- дневки обеспеченностью 0,92 t н, °С для нужного города или региона.

Для Санкт-Петербурга t н = -26 °С

2.1.3 Расчётная температура воздуха внутри помещения

В данном столбце в соответствии с ГОСТ30494-2011 "Здания жилые и общественные" указывается оптимальная температура воздуха внутри помещения t в, °С в зависимости от его типа. Так, для жилых комнат

t в = 18 – 20 °С, для ванных комнат t в = 24 – 26 °С, для кухонь t в = 19 – 21 °С.

В расчётах для ванных комнат примем t в = 25 °С, для всех остальных помещений t в = 20 °С

2.1.4 Наименование поверхности.

Для обозначения ограждающих конструкций вводятся следующие сокращения:

НС – наружная стена

ДО – окно

ДН – дверь наружная

2.1.5 Ориентация поверхности

Указывается ориентация вертикальных ограждающих конструкций по сторонам света:

В - восток

2.1.6 Длина поверхности

Указывается длина или в случае вертикальной поверхности высота ограждающей конструкции в метрах.

2.1.7 Ширина поверхности

Указывается ширина поверхности в метрах.

2.1.8 Площадь поверхности

Площадь поверхности определяется как произведение длины(высоты) и ширины поверхности по формуле:

, (2.1)

a – длина(высота), м

b – ширина, м

При подсчете теплопотерь площадь отдельных ограждений A, м2, определяется с соблюдением следующих правил обмера:

1. Площадь окон, дверей и фонарей измеряют по наименьшему строительному проему.

2. Площадь потолка и пола измеряют между осями внутренних стен и внутренней поверхностью наружной стены. Площадь стен и пола, расположенных на грунте, в том числе на лагах, определяют с условной разбивкой их по зонам.

3. Площадь наружных стен измеряют

В плане - по наружному периметру между осями внутренних стен и наружным углом стены;

По высоте - на всех этажах, кроме нижнего: от уровня чистого пола до пола следующего этажа. На последнем этаже верх наружной стены совпадает с верхом покрытия или чердачного перекрытия. На нижнем этаже в зависимости от конструкции пола: а) от внутренней поверхности пола по грунту; б) от поверхности подготовки под конструкцию пола на лагах; в) от нижней грани перекрытия над неотапливаемым подпольем или подвалом.

4. При определении теплопотерь через внутренние стены их площади обмеряют по внутреннему периметру. Потери теплоты через внутренние ограждения помещений можно не учитывать, если разность температур воздуха в этих помещениях составляет 3°С и менее.

Передача теплоты из помещения через конструкцию пола или стены и толщу грунта, с которыми они соприкасаются, подчиняется сложным закономерностям. Для расчета сопротивления теплопередаче конструкций, расположенных на грунте, применяют упрощенную методику. Поверхность пола по грунту делится на полосы шириной 2 м, параллельные стыку наружной стены и поверхности земли. Отсчет зон начинается по стене от уровня земли, а если стен по грунту нет, то зоной I является полоса пола, ближайшая к наружной стене. Следующие две полосы будут иметь номера II и III, а остальная часть пола составит зону IV. (см рисунок 2.3)

Таким образом, общая площадь пола разбивается на зоны и площадь заносится в столбец для каждой зоны пола, причём для первой зоны площадь в углах здания считается дважды.

Рисунок 2.3 – Принцип разбиение пола здания на зоны

Рисунок 2.4 – Разбиение пола 1 этажа на зоны

2.1.9 Расчётная разность температур

,ºС определяется как разность температур внутреннего воздуха в помещении и температуры наружного воздуха наиболее холодной пятидневки по формуле:

(2.2)

2.1.10 Коэффициент n

Выбираем коэффициент n, учитывающий положение ограждающей конструкции по отношению к наружному воздуху:

n = 1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне.

n = 0,9. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне.

n = 0,75. Перекрытия над неотапливаемыми подвалами со световыми проемами в стенах.

n = 0,6. Перекрытия над неотапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли.

n = 0,4. Перекрытия над неотапливаемыми техническими подпольями, расположенными ниже уровня земли

2.1.11 Коэффициент теплопередачи ограждающей конструкции

Коэффициент теплопередачи ограждающей конструкции k, Вт/(м 2 ∙ °С) - величина, численно равная поверхностной плотности теплового потока, проходящего через ограждающую конструкцию при разности внутренней и наружной температур воздуха рассчитывается по формуле:

где R i - нормативное значение сопротивления теплопередаче i-ой зоны пола.

Для каждой зоны неутепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

зона I - R I = 2,1 м 2 ·°С/Вт;

зона II - R II = 4,3 м 2 ·°С/Вт;

зона III - R III = 8,6 м 2 ·°С/Вт;

зона IV - R IV = 14,2 м 2 ·°С/Вт.

2.1.12 Основные теплопотери

Формула расчёта основных теплопотерь Q осн, Вт помещения через ограждающие конструкции:

(2.5)

где k – коэффициент теплопередачи ограждающей конструкции, Вт/(м 2 ∙ °С);

А – площадь поверхности, м 2

2.1.13 Коэффициент дополнительных потерь β 1

Добавка на ориентацию ограждения по сторонам света принимается для всех наружных вертикальных ограждений или проекций на вертикаль наружных наклонных ограждений:

· для северной, северо-восточной, северо-западной, восточной ориентации ß 1 = 0,1;

· юго-восточной и западной ß 1 = 0,05;

· южной и юго-западной ß 1 = 0.

Рисунок 2.5 – Значение коэффициента ß 1

2.1.14 Коэффициент дополнительных потерь β 2

Добавка на угловое помещение, имеющее две и более наружных стен, учитывает, что в таком помещении радиационная температура ниже, чем в рядовом. Поэтому в угловом помещении жилого дома температуру внутреннего воздуха принимают на 2°С выше, чем в рядовом помещении, а в зданиях другого назначения увеличенные теплопотери учитывают добавкой ß 2 = 0,05 к основным теплопотерям вертикальных наружных ограждений.

2.1.15 Коэффициент дополнительных потерь β 3

Добавка на врывание холодного воздуха через наружные двери в здание, не оборудованное воздушно-тепловой завесой, при их кратковременном открывании принимается к основным теплопотерям дверей. Так, в здании высотой Н для тройных дверей с двумя тамбурами , для двойных дверей с тамбуром , для двойных дверей без тамбура , для одинарных дверей . Для наружных ворот при отсутствии тамбура и воздушно-тепловой завесы теплопотери рассчитываются с добавкой , а при наличии тамбура у ворот - с добавкой . Указанные добавки не относятся к летним и запасным наружным дверям и воротам.

2.1.16 Суммарный коэффициент дополнительных потерь

Суммарный коэффициент дополнительных потерь определяется по формуле:

(2.6)

2.1.17 Теплопотери с учетом дополнительных потерь Q β

Для нахождения теплопотерь с учетом дополнительных потерь необходимо перемножить значения двенадцатого и шестнадцатого столбцов, т.е. учитывается влияние добавочных коэффициентов на основные теплопотери.

2.1.18 Нормируемая воздухопроницаемость

Нормируемая воздухопроницаемость G н - это максимальная разрешенная воздухопроницаемость конструкции при любых погодных условиях, принимаемая в соответствии со СНиП 23-02-2003, значения которой приведены в табл. 2.1

Таблица 2.1 – Занчения G н

Ограждение Воздухопроницаемость G н, кг/(м 2 ·ч)
1. Наружная стена, перекрытие и покрытие жилого, общественного, административного и бытового здания или помещения 0,5
2. Наружная стена, перекрытие и покрытие производственного здания или помещения 1,0
3. Стык между панелями наружных стен здания: жилого производственного 0,5* 1,0*
4. Входная дверь в квартиру 1,5
5. Входная дверь в жилое, общественное, бытовое здание 7,0
6. Окно и балконная дверь жилого, общественного, бытового здания или помещения в деревянном переплете; окно, фонарь производственного здания с кондиционированием воздуха 6,0
7. Окно и балконная дверь жилого, общественного, бытового здания или помещения в пластмассовом или алюминиевом переплете 5,0
8. Окно, дверь, ворота производственного здания 8,0
9. Фонарь производственного здания 10,0

2.1.19 Разность давлений воздуха

Расход наружного воздуха, поступающего в помещения в результате инфильтрации в расчетных условиях, зависит от объемно-планировочного решения здания, а также плотности окон, балконных дверей, витражей. Задача инженерного расчета сводится к определению расхода инфильтрационного воздуха G инф, кг/ч, через отдельные ограждения каждого помещения. Инфильтрация через стены и покрытия невелика, поэтому ею обычно пренебрегают и рассчитывают только через заполнение световых проемов, а также через закрытые двери и ворота, в том числе и те, которые при обычном эксплуатационном режиме не открываются. Затраты теплоты на врывание воздуха через открывающиеся двери и ворота в расчетном режиме учитываются добавками к основным теплопотерям через входные двери и ворота.

Расчет выявляет максимально возможную инфильтрацию, поэтому считается, что каждое окно или дверь находится на наветренной стороне здания.

Расчетная разность давлений Δр, Па для окна или двери каждого этажа определяется по формуле:

Для дверей:

(2.9)

R инф.ок R инф.дв - требуемое сопротивления воздухопроницанию окна и двери соответственно, м 2 ∙ ч/кг;

Δр – расчётная разность давлений, Па;

Δр 0 – 10 Па.

2.1.21 Коэффициент теплопередачи инфильтрации

Коэффициент учитывающий влияние трансмиссионного теплового потока:

к =0,7. Для стыковых панелей стен и для окон с тройным остеклением;

к = 0,8. Для окон и балконных дверей с раздельными переплётами;

к = 1. Для окон и балконных дверей со спаренными или смежными переплётами.

2.1.22 Расход тепла на инфильтрацию

Расход тепла на инфильтрацию Q инф, Вт рассчитывается по формуле:

2.1.24 Мощность единицы нагревательного прибора

В качестве отопительного прибора выбран чугунный радиатор М-140, который широко известен на территории СНГ. Чугунные секционные радиаторы являются традиционными для нашей страны приборами.

Основное их преимущество возможность использования в открытых системах. В отличие от других радиаторов, чугунные практически нечувствительны к опорожнениям системы, то есть позволяют сколь угодно часто сливать из нее воду. При разливке чугуна на его поверхности образуется особенно прочный слой с повышенным содержанием кремния, поэтому в необработанном виде чугун довольно стоек к коррозии, в том числе от воздействия твердых частиц, присутствующих в теплоносителе. Говоря об эксплуатационных свойствах чугунных радиаторов, следует отметить их высокую теплопроводность и большую тепловую инерционность.

Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Примем мощность одной секции радиатора M-140 равную 140 Вт.

В ванной комнате наличие стояка отопления не предполагается. Отопление комнаты осуществляется установкой полотенцесушителя на трубопровод ГВС. Примем мощность полотенцесушителя равную 260 Вт.

2.1.25 Количество приборов отопления

Для того, чтобы найти количество секций радиатора М-140 на одно помещение нужно полные теплопотери этого помещения поделить на мощность одной секции радиатора М-140.

Общая тепловая нагрузка первого этажа здания равна 25,152 кВт, второго этажа 23,514 кВт.

Все расчёты предыдущих пунктов выполняются для каждого этажа здания и сводятся в таблицу в приложении А (для первого этажа) и приложении Б (для второго этажа)



Статьи по теме: