Электромагнитное поле. Шмелев в.е., сбитнев с.а

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное.

Скорость распространения электромагнитной волны V=C/EM

Где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна.
Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1.

При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным.

Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током.

Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве.

Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны.

Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты.

Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны.

Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты.
Электрические силовые линии идут от одного заряда к другому.

Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения.

Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление.
Напряжённость поля направлена по касательной к силовым линиям.

Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна - распространение электромагнитных полей в пространстве и во времени.

Электромагнитные волны, в отличие от упругих (звуковых) волн , могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с , то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волны , её скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны - это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением . Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур "открывают", т.е. создают условия для того, чтобы поле "уходило" в пространство. Это устройство называется открытым колебательным контуром - антенной .

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Шмелев В.Е., Сбитнев С.А.

"ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ"

"ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ"

Глава 1. Основные понятия теории электромагнитного поля

§ 1.1. Определение электромагнитного поля и его физических величин.
Математический аппарат теории электромагнитного поля

Электромагнитным полем (ЭМП) называется вид материи, оказывающий на заряженные частицы силовое воздействие и определяемый во всех точках двумя парами векторных величин, которые характеризуют две его стороны - электрическое и магнитное поля.

Электрическое поле - это составляющая ЭМП, которая характеризуется воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и не зависящей от ее скорости.

Магнитное поле - это составляющая ЭМП, которая характеризуется воздействием на движущуюся частицу с силой, пропорциональной заряду частицы и ее скорости.

Изучаемые в курсе теоретических основ электротехники основные свойства и методы расчета ЭМП предполагают качественное и количественное исследование ЭМП, встречающихся в электротехнических, радиоэлектронных и биомедицинских устройствах. Для этого наиболее пригодны уравнения электродинамики в интегральной и дифференциальной формах.

Математический аппарат теории электромагнитного поля (ТЭМП) базируется на теории скалярного поля, векторном и тензорном анализе, а также дифференциальном и интегральном исчислении.

Контрольные вопросы

1. Что такое электромагнитное поле?

2. Что называют электрическим и магнитным полем?

3. На чём базируется математический аппарат теории электромагнитного поля?

§ 1.2. Физические величины, характеризующие ЭМП

Вектором напряженности электрического поля в точке Q называется вектор силы, действующей на электрически заряженную неподвижную частицу, помещенную в точку Q , если эта частица имеет единичный положительный заряд.

В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:

где E измеряется в В/м.

Магнитное поле характеризуется вектором магнитной индукции . Магнитная индукция в некоторой точке наблюдения Q - это векторная величина, модуль которой равен магнитной силе, действующей на заряженную частицу, находящуюся в точке Q , имеющую единичный заряд и движущуюся с единичной скоростью, причем векторы силы, скорости, магнитной индукции, а также заряд частицы удовлетворяют условию

.

Магнитная сила, действующая на криволинейный проводник с током может быть определена по формуле

.

На прямолинейный проводник, если он находится в однородном поле, действует следующая магнитная сила

.

Во всех последних формулах B - магнитная индукция, которая измеряется в теслах (Тл).

1 Тл - это такая магнитная индукция, при которой на прямолинейный проводник с током 1А действует магнитная сила, равная 1Н, если линии магнитной индукции направлены перпендикулярно проводнику с током, и если длина проводника равна 1м.

Кроме напряженности электрического поля и магнитной индукции в теории электромагнитного поля рассматриваются следующие векторные величины:

1) электрическая индукция D (электрическое смещение), которая измеряется в Кл/м 2 ,

Векторы ЭМП являются функциями пространства и времени:

где Q - точка наблюдения, t - момент времени.

Если точка наблюдения Q находится в вакууме, то между соответствующими парами векторных величин имеют место следующие соотношения

где - абсолютная диэлектрическая проницаемость вакуума (основная электрическая постоянная), =8,85419*10 -12 ;

Абсолютная магнитная проницаемость вакуума (основная магнитная постоянная); = 4π*10 -7 .

Контрольные вопросы

1. Что такое напряжённость электрического поля?

2. Что называют магнитной индукцией?

3. Чему равна магнитная сила, действующая на движущуюся заряженную частицу?

4. Чему равна магнитная сила, действующая на проводник с током?

5. Какими векторными величинами характеризуется электрическое поле?

6. Какими векторными величинами характеризуется магнитное поле?

§ 1.3. Источники электромагнитного поля

Источниками ЭМП являются электрические заряды, электрические диполи, движущиеся электрические заряды, электрические токи, магнитные диполи.

Понятия электрического заряда и электрического тока даны в курсе физики. Электрические токи бывают трех типов:

1. Токи проводимости.

2. Токи смещения.

3. Токи переноса.

Ток проводимости - скорость прохождения подвижных зарядов электропроводящего тела через некоторую поверхность.

Ток смещения - скорость изменения потока вектора электрического смещения через некоторую поверхность.

.

Ток переноса характеризуется следующим выражением

где v - скорость переноса тел через поверхность S ; n - вектор единичной нормали к поверхности; - линейная плотность заряда тел, пролетающих через поверхность, в направлении нормали; ρ - объемная плотность электрического заряда; ρv - плотность тока переноса.

Электрическим диполем называется пара точечных зарядов +q и - q , находящихся на расстоянии l друг от друга (рис. 1).

Точечный электрический диполь характеризуется вектором электрического дипольного момента:

Магнитным диполем называется плоский контур с электрическим током I. Магнитный диполь характеризуется вектором магнитного дипольного момента

где S - вектор площади плоской поверхности, натянутой на контур с током. Вектор S направлен перпендикулярно этой плоской поверхности, причем, если смотреть из конца вектора S , то движение по контуру в направлении, совпадающим с направлением тока, будет происходить против часовой стрелки. Это означает, что направление вектора дипольного магнитного момента связано с направлением тока по правилу правого винта.

Атомы и молекулы вещества представляют собой электрические и магнитные диполи, поэтому каждую точку вещественного типа в ЭМП можно характеризовать объемной плотностью электрического и магнитного дипольного момента:

P - электрическая поляризованность вещества:

M - намагниченность вещества:

Электрическая поляризованность вещества - это векторная величина, равная объемной плотности электрического дипольного момента в некоторой точке вещественного тела.

Намагниченность вещества - это векторная величина, равная объемной плотности магнитного дипольного момента в некоторой точке вещественного тела.

Электрическое смещение - это векторная величина, которая для любой точки наблюдения вне зависимости от того, находится ли она в вакууме или в веществе, определяется из соотношения:

(для вакуума или вещества),

(только для вакуума).

Напряженность магнитного поля - векторная величина, которая для любой точки наблюдения вне зависимости от того находится ли она в вакууме или в веществе определяется из соотношения:

,

где напряженность магнитного поля измеряется в А/м.

Кроме поляризованности и намагниченности существуют другие объемно-распределенные источники ЭМП:

- объемная плотность электрического заряда ; ,

где объемная плотность электрического заряда измеряется в Кл/м 3 ;

- вектор плотности электрического тока , нормальная составляющая которого равна

В более общем случае ток, протекающий через незамкнутую поверхность S , равен потоку вектора плотности тока через эту поверхность:

где вектор плотности электрического тока измеряется в А/м 2 .

Контрольные вопросы

1. Что является источниками электромагнитного поля?

2. Что такое ток проводимости?

3. Что такое ток смещения?

4. Что такое ток переноса?

5. Что такое электрический диполь и электрический дипольный момент?

6. Что такое магнитный диполь и магнитный дипольный момент?

7. Что называют электрической поляризованностью и намагниченностью вещества?

8. Что называется электрическим смещением?

9. Что называется напряжённостью магнитного поля?

10. Что такое объёмная плотность электрического заряда и плотность тока?

Пример применения MATLAB

Задача .

Дано : Контур с электрическим током I в пространстве представляет собой периметр треугольника, декартовы координаты вершин которого заданы: x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 . Здесь нижние индексы - номера вершин. Вершины пронумерованы в направлении протекания электрического тока.

Требуется составить функцию MATLAB, вычисляющую вектор дипольного магнитного момента контура. При составлении m-файла можно предполагать, что пространственные координаты измеряются в метрах, а ток - в амперах. Допускается произвольная организация входных и выходных параметров.

Решение

% m_dip_moment - вычисление магнитного дипольного момента треугольного контура с током в пространстве

% pm = m_dip_moment(tok,nodes)

% ВХОДНЫЕ ПАРАМЕТРЫ

% tok - ток в контуре;

% nodes - квадратная матрица вида ." , в каждой строке которой записаны координаты соответствующей вершины.

% ВЫХОДНОЙ ПАРАМЕТР

% pm - матрица-строка декартовых компонентов вектора магнитного дипольного момента.

function pm = m_dip_moment(tok,nodes);

pm=tok*)]) det()]) det()])]/2;

% В последнем операторе вектор площади треугольника умножается на ток

>> nodes=10*rand(3)

9.5013 4.8598 4.5647

2.3114 8.913 0.18504

6.0684 7.621 8.2141

>> pm=m_dip_moment(1,nodes)

13.442 20.637 -2.9692

В данном случае получилось P M = (13.442*1 x + 20.637*1 y - 2.9692*1 z ) А*м 2 , если ток в контуре равен 1 А.

§ 1.4. Пространственные дифференциальные операторы в теории электромагнитного поля

Градиентом скалярного поля Φ(Q ) = Φ(x, y, z ) называется векторное поле, определяемое формулой:

,

где V 1 - область, содержащая точку Q ; S 1 - замкнутая поверхность, ограничивающая область V 1 , Q 1 - точка, принадлежащая поверхности S 1 ; δ - наибольшее расстояние от точки Q до точек на поверхности S 1 (max| Q Q 1 |).

Дивергенцией векторного поля F (Q )=F (x, y, z ) называется скалярное поле, определяемое по формуле:

Ротором (вихрем) векторного поля F (Q )=F (x, y, z ) называется векторное поле, определяемое по формуле:

rot F =

Оператор набла - это векторный дифференциальный оператор, который в декартовых координатах определяется формулой:

Представим grad, div и rot через оператор набла:

Запишем эти операторы в декартовых координатах:

; ;

Оператор Лапласа в декартовых координатах определяется формулой:

Дифференциальные операторы второго порядка:

Интегральные теоремы

Теорема о градиенте ;

Теорема о дивергенции

Теорема о роторе

В теории ЭМП применяется также ещё одна из интегральных теорем:

.

Контрольные вопросы

1. Что называется градиентом скалярного поля?

2. Что называется дивергенцией векторного поля?

3. Что называется ротором векторного поля?

4. Что такое оператор набла и как через него выражаются дифференциальные операторы первого порядка?

5. Какие интегральные теоремы справедливы для скалярных и векторных полей?

Пример применения MATLAB

Задача .

Дано : В объёме тетраэдра скалярное и векторное поля изменяются по линейному закону. Координаты вершин тетраэдра заданы матрицей вида [x 1 , y 1 , z 1 ; x 2 , y 2 , z 2 ; x 3 , y 3 , z 3 ; x 4 , y 4 , z 4 ]. Значения скалярного поля в вершинах заданы матрицей [Ф 1 ; Ф 2 ; Ф 3 ; Ф 4 ]. Декартовы компоненты векторного поля в вершинах заданы матрицей [F 1 x , F 1y , F 1z ; F 2x , F 2y , F 2z ; F 3x , F 3y , F 3z ; F 4x , F 4y , F 4z ].

Определить в объёме тетраэдра градиент скалярного поля, а также дивергенцию и ротор векторного поля. Составить для этого функцию MATLAB.

Решение . Ниже приведён текст m-функции.

% grad_div_rot - Вычисление градиента, дивергенции и ротора... в объёме тетраэдра

% =grad_div_rot(nodes,scalar,vector)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - матрица координат вершин тетраэдра:

% строкам соответствуют вершины, столбцам - координаты;

% scalar - столбцовая матрица значений скалярного поля в вершинах;

% vector - матрица компонентов векторного поля в вершинах:

% ВЫХОДНЫЕ ПАРАМЕТРЫ

% grad - матрица-строка декартовых компонентов градиента скалярного поля;

% div - значение дивергенции векторного поля в объёме тетраэдра;

% rot - матрица-строка декартовых компонентов ротора векторного поля.

% При вычислениях предполагается, что в объёме тетраэдра

% векторное и скалярное поля изменяются в пространстве по линейному закону.

function =grad_div_rot(nodes,scalar,vector);

a=inv(); % Матрица коэффициентов линейной интерполяции

grad=(a(2:end,:)*scalar)."; % Компоненты градиента скалярного поля

div=*vector(:); % Дивергенция векторного поля

rot=sum(cross(a(2:end,:),vector."),2).";

Пример запуска разработанной m-функции:

>> nodes=10*rand(4,3)

3.5287 2.0277 1.9881

8.1317 1.9872 0.15274

0.098613 6.0379 7.4679

1.3889 2.7219 4.451

>> scalar=rand(4,1)

>> vector=rand(4,3)

0.52515 0.01964 0.50281

0.20265 0.68128 0.70947

0.67214 0.37948 0.42889

0.83812 0.8318 0.30462

>> =grad_div_rot(nodes,scalar,vector)

0.16983 -0.03922 -0.17125

0.91808 0.20057 0.78844

Если предположить, что пространственные координаты измеряются в метрах, а векторное и скалярное поля - безразмерные, то в данном примере получилось:

grad Ф = (-0.16983*1 x - 0.03922*1 y - 0.17125*1 z ) м -1 ;

div F = -1.0112 м -1 ;

rot F = (-0.91808*1 x + 0.20057*1 y + 0.78844*1 z ) м -1 .

§ 1.5. Основные законы теории электромагнитного поля

Уравнения ЭМП в интегральной форме

Закон полного тока:

или

Циркуляция вектора напряженности магнитного поля вдоль контура l равна полному электрическому току, протекающему через поверхность S , натянутую на контур l , если направление тока образуют с направлением обхода контура правовинтовую систему.

Закон электромагнитной индукции:

,

где E c - напряженность стороннего электрического поля.

ЭДС электромагнитной индукции e и в контуре l равна скорости изменения магнитного потока через поверхность S , натянутую на контур l , причем направление скорости изменения магнитного потока образует с направлением e и левовинтовую систему.

Теорема Гаусса в интегральной форме:

Поток вектора электрического смещения через замкнутую поверхность S равен сумме свободных электрических зарядов в объёме, ограниченном поверхностью S .

Закон непрерывности линий магнитной индукции:

Магнитный поток через любую замкнутую поверхность равен нулю.

Непосредственное применение уравнений в интегральной форме позволяет производить расчет простейших электромагнитных полей. Для расчета электромагнитных полей более сложной формы применяют уравнения в дифференциальной форме. Эти уравнения называются уравнениями Максвелла.

Уравнения Максвелла для неподвижных сред

Эти уравнения непосредственно следуют из соответствующих уравнений в интегральной форме и из математических определений пространственных дифференциальных операторов.

Закон полного тока в дифференциальной форме:

,

Плотность полного электрического тока,

Плотность стороннего электрического тока,

Плотность тока проводимости,

Плотность тока смещения: ,

Плотность тока переноса: .

Это означает, что электрический ток является вихревым источником векторного поля напряженности магнитного поля.

Закон электромагнитной индукции в дифференциальной форме:

Это означает, что переменное магнитное поле является вихревым источником для пространственного распределения вектора напряженности электрического поля.

Уравнение непрерывности линий магнитной индукции:

Это означает, что поле вектора магнитной индукции не имеет истоков, т.е. в природе не существует магнитных зарядов (магнитных монополей).

Теорема Гаусса в дифференциальной форме:

Это означает, что истоками векторного поля электрического смещения являются электрические заряды.

Для обеспечения единственности решения задачи анализа ЭМП необходимо дополнить уравнения Максвелла уравнениями материальной связи между векторами E и D , а также B и H .

Соотношения между векторами поля и электрофизическими свойствами среды

Известно, что

(1)

Все диэлектрики поляризуются под действием электрического поля. Все магнетики намагничиваются под действием магнитного поля. Статические диэлектрические свойства вещества могут быть полностью описаны функциональной зависимостью вектора поляризованности P от вектора напряженности электрического поля E (P =P (E )). Статические магнитные свойства вещества могут быть полностью описаны функциональной зависимостью вектора намагниченности M от вектора напряженности магнитного поля H (M =M (H )). В общем случае такие зависимости носят неоднозначный (гистерезисный) характер. Это означает, что вектор поляризованности или намагниченности в точке Q определяется не только значением вектора E или H в этой точке, но и предысторией изменения вектора E или H в этой точке. Экспериментально исследовать и моделировать эти зависимости чрезвычайно сложно. Поэтому на практике часто предполагают, что векторы P и E , а также M и H коллинеарны, и электрофизические свойства вещества описывают скалярными гистерезисными функциями (|P |=|P |(|E |), |M |=|M |(|H |). Если гистерезисными характеристиками вышеназванных функций можно пренебречь, то электрофизические свойства описывают однозначными функциями P =P (E ), M =M (H ).

Во многих случаях эти функции приближенно можно считать линейными, т.е.

Тогда с учетом соотношения (1) можно записать следующее

, (4)

Соответственно относительная диэлектрическая и магнитная проницаемости вещества:

Абсолютная диэлектрическая проницаемость вещества:

Абсолютная магнитная проницаемость вещества:

Соотношения (2), (3), (4) характеризуют диэлектрические и магнитные свойства вещества. Электропроводящие свойства вещества могут быть описаны законом Ома в дифференциальной форме

где - удельная электрическая проводимость вещества, измеряемая в См/м.

В более общем случае зависимость между плотностью тока проводимости и вектором напряженности электрического поля носит нелинейный векторно-гистерезисный характер.

Энергия электромагнитного поля

Объемная плотность энергии электрического поля равна

,

где W э измеряется в Дж/м 3 .

Объемная плотность энергии магнитного поля равна

,

где W м измеряется в Дж/м 3 .

Объемная плотность энергии электромагнитного поля равна

В случае линейных электрических и магнитных свойств вещества объемная плотность энергии ЭМП равна

Это выражение справедливо для мгновенных значений удельной энергии и векторов ЭМП.

Удельная мощность тепловых потерь от токов проводимости

Удельная мощность сторонних источников

Контрольные вопросы

1. Как формулируется закон полного тока в интегральной форме?

2. Как формулируется закон электромагнитной индукции в интегральной форме?

3. Как формулируется теорема Гаусса и закон непрерывности магнитного потока в интегральной форме?

4. Как формулируется закон полного тока в дифференциальной форме?

5. Как формулируется закон электромагнитной индукции в дифференциальной форме?

6. Как формулируется теорема Гаусса и закон непрерывности линий магнитной индукции в интегральной форме?

7. Какими соотношениями описываются электрофизические свойства вещества?

8. Как выражается энергия электромагнитного поля через векторные величины, его определяющие?

9. Как определяется удельная мощность тепловых потерь и удельная мощность сторонних источников?

Примеры применения MATLAB

Задача 1 .

Дано : Внутри объёма тетраэдра магнитная индукция и намагниченность вещества изменяются по линейному закону. Координаты вершин тетраэдра заданы, значения векторов магнитной индукции и намагниченности вещества в вершинах также заданы.

Вычислить плотность электрического тока в объёме тетраэдра, используя m-функцию, составленную при решении задачи в предыдущем параграфе. Вычисление выполнить в командном окне MATLAB, предполагая, что пространственные координаты измеряются в миллиметрах, магнитная индукция - в теслах, напряжённость магнитного поля и намагниченность - в кА/м.

Решение .

Зададим исходные данные в формате, совместимом с m-функцией grad_div_rot:

>> nodes=5*rand(4,3)

0.94827 2.7084 4.3001

0.96716 0.75436 4.2683

3.4111 3.4895 2.9678

1.5138 1.8919 2.4828

>> B=rand(4,3)*2.6-1.3

1.0394 0.41659 0.088605

0.83624 -0.41088 0.59049

0.37677 -0.54671 -0.49585

0.82673 -0.4129 0.88009

>> mu0=4e-4*pi % абcолютная магнитная проницаемоcть вакуума, мкГн/мм

>> M=rand(4,3)*1800-900

122.53 -99.216 822.32

233.26 350.22 40.663

364.93 218.36 684.26

83.828 530.68 -588.68

>> =grad_div_rot(nodes,ones(4,1),B/mu0-M)

0 -3.0358e-017 0

914.2 527.76 -340.67

В данном примере вектор полной плотности тока в рассматриваемом объёме получился равным (-914.2*1 x + 527.76*1 y - 340.67*1 z ) А/мм 2 . Чтобы определить модуль плотности тока, выполним следующий оператор:

>> cur_d=sqrt(cur_dens*cur_dens.")

Вычисленное значение плотности тока не может быть получено в сильно намагниченных средах в реальных технических устройствах. Данный пример - чисто учебный. А теперь проверим корректность задания распределения магнитной индукции в объёме тетраэдра. Для этого выполним следующий оператор:

>> =grad_div_rot(nodes,ones(4,1),B)

0 -3.0358e-017 0

0.38115 0.37114 -0.55567

Здесь мы получили значение div B = -0.34415 Тл/мм, чего не может быть в соответствии с законом непрерывности линий магнитной индукции в дифференциальной форме. Из этого следует, что распределение магнитной индукции в объёме тетраэдра задано некорректно.

Задача 2 .

Пусть тетраэдр, координаты вершин которого заданы, находится в воздухе (единицы измерения - метры). Пусть заданы значения вектора напряжённости электрического поля в его вершинах (единицы измерения - кВ/м).

Требуется вычислить объёмную плотность электрического заряда внутри тетраэдра.

Решение можно выполнить аналогично:

>> nodes=3*rand(4,3)

2.9392 2.2119 0.59741

0.81434 0.40956 0.89617

0.75699 0.03527 1.9843

2.6272 2.6817 0.85323

>> eps0=8.854e-3 % абсолютная диэлектрическая проницаемость вакуума, нФ/м

>> E=20*rand(4,3)

9.3845 8.4699 4.519

1.2956 10.31 11.596

19.767 6.679 15.207

11.656 8.6581 10.596

>> =grad_div_rot(nodes,ones(4,1),E*eps0)

0.076467 0.21709 -0.015323

В данном примере объёмная плотность заряда получилась равной 0.10685 мкКл/м 3 .

§ 1.6. Граничные условия для векторов ЭМП.
Закон сохранения заряда. Теорема Умова-Пойнтинга

или

Здесь обозначено: H 1 - вектор напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2 - то же в среде №2; H 1t - тангенциальная (касательная) составляющая вектора напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2t - то же в среде №2; E 1 вектор полной напряжённости электрического поля на поверхности раздела сред в среде №1; E 2 - то же в среде №2; E 1 c - сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2с - то же в среде №2; E 1t - тангенциальная составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; E t - тангенциальная сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; B 1 - вектор магнитной индукции на поверхности раздела сред в среде №1; B 2 - то же в среде №2; B 1n - нормальная составляющая вектора магнитной индукции на поверхности раздела сред в среде №1; B 2n - то же в среде №2; D 1 - вектор электрического смещения на поверхности раздела сред в среде №1; D 2 - то же в среде №2; D 1n - нормальная составляющая вектора электрического смещения на поверхности раздела сред в среде №1; D 2n - то же в среде №2; σ - поверхностная плотность электрического заряда на границе раздела сред, измеряемая в Кл/м 2 .

Закон сохранения заряда

Если отсутствуют сторонние источники тока, то

а в общем случае , т. е. вектор плотности полного тока не имеет истоков, т. е. линии полного тока всегда замкнуты

Теорема Умова-Пойнтинга

Объёмная плотность мощности, потребляемой материальной точкой в ЭМП, равна

В соответствии с тождеством (1)

Это и есть уравнение баланса мощностей для объема V . В общем случае в соответствии с равенством (3) электромагнитная мощность, генерируемая источниками внутри объема V , идет на тепловые потери, на накопление энергии ЭМП и на излучение в окружающее пространство через замкнутую поверхность, ограничивающую этот объем.

Подынтегральное выражение в интеграле (2) называется вектором Пойнтинга:

,

где П измеряется в Вт/м 2 .

Этот вектор равен плотности потока электромагнитной мощности в некоторой точке наблюдения. Равенство (3) - есть математическое выражение теоремы Умова-Пойнтинга.

Электромагнитная мощность, излучаемая областью V в окружающее пространство равна потоку вектора Пойнтинга через замкнутую поверхность S , ограничивающую область V .

Контрольные вопросы

1. Какими выражениями описываются граничные условия для векторов электромагнитного поля на поверхностях раздела сред?

2. Как формулируется закон сохранения заряда в дифференциальной форме?

3. Как формулируется закон сохранения заряда в интегральной форме?

4. Какими выражениями описываются граничные условия для плотности тока на поверхностях раздела сред?

5. Чему равна объемная плотность мощности, потребляемой материальной точкой в электромагнитном поле?

6. Как записывается уравнение баланса электромагнитной мощности для некоторого объёма?

7. Что такое вектор Пойнтинга?

8. Как формулируется теорема Умова-Пойнтинга?

Пример применения MATLAB

Задача .

Дано : Имеется треугольная поверхность в пространстве. Координаты вершин заданы. Значения векторов напряжённости электрического и магнитного поля в вершинах также заданы. Сторонняя составляющая напряжённости электрического поля равна нулю.

Требуется вычислить электромагнитную мощность, проходящую через эту треугольную поверхность. Составить функцию MATLAB, выполняющую это вычисление. При вычислениях считать, что вектор положительной нормали направлен так, что если смотреть из его конца, то движение в порядке возрастания номеров вершин будет происходить против часовой стрелки.

Решение . Ниже приведён текст m-функции.

% em_power_tri - вычисление электромагнитной мощности, проходящей через

% треугольную поверхность в пространстве

% P=em_power_tri(nodes,E,H)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - квадратная матрица вида ." ,

% в каждой строке которой записаны координаты соответствующей вершины.

% E - матрица компонентов вектора напряжённости электрического поля в вершинах:

% строкам соответствуют вершины, столбцам - декартовы компоненты.

% H - матрица компонентов вектора напряжённости магнитного поля в вершинах.

% ВЫХОДНОЙ ПАРАМЕТР

% P - электромагнитная мощность, проходящая через треугольник

% При вычислениях предполагается, что на треугольнике

% векторы напряжённости поля изменяются в пространстве по линейному закону.

function P=em_power_tri(nodes,E,H);

% Вычисляем вектор двойной площади треугольника

S=)]) det()]) det()])];

P=sum(cross(E,(ones(3,3)+eye(3))*H,2))*S."/24;

Пример запуска разработанной m-функции:

>> nodes=2*rand(3,3)

0.90151 0.5462 0.4647

1.4318 0.50954 1.6097

1.7857 1.7312 1.8168

>> E=2*rand(3,3)

0.46379 0.15677 1.6877

0.47863 1.2816 0.3478

0.099509 0.38177 0.34159

>> H=2*rand(3,3)

1.9886 0.62843 1.1831

0.87958 0.73016 0.23949

0.6801 0.78648 0.076258

>> P=em_power_tri(nodes,E,H)

Если предположить, что пространственные координаты измеряются в метрах, вектор напряжённости электрического поля - в вольтах на метр, вектор напряжённости магнитного поля - в амперах на метр, то в данном примере электромагнитная мощность, проходящая через треугольник, получилась равной 0.18221 Вт.


Электричество вокруг нас

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным - существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи ! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое , то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое , распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле - переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Источники электромагнитных полей

Природные (естественные) источники электромагнитных полей

Природные (естественные) источники ЭМП делят на следующие группы:

  • электрическое и магнитное поле Земли;
  • радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • атмосферное электричество;
  • биологический электромагнитный фон.
  • Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

    Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

    Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

    Внеземные источники включают излучения за пределами атмосферы Земли.

    Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

    Антропогенные источники электромагнитных полей

    Антропогенные источники делятся на 2 группы:

    Источники низкочастотных излучений (0 - 3 кГц)

    Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

    Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

    Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

    К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

    Основными техногенными источниками являются:

  • бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п. устройства;
  • электростанции, энергосиловые установки и трансформаторные подстанции;
  • широкоразветвлённые электрические и кабельные сети;
  • радиолокационные, радио- и телепередающие станции, ретрансляторы;
  • компьютеры и видеомониторы;
  • воздушные линии электропередач (ЛЭП).
  • Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

    Научно-технический прогресс сопровождается резким увеличением мощности электромагнитных полей (ЭМП), созданных человеком, которые в отдель-ных случаях в сотни и тысячи раз выше уровня естественных полей.

    Спектр электромагнитных колебаний включает волны длиной от 1000 км до 0,001 мкм и по частоте f от 3×10 2 до 3×10 20 Гц. Электромагнитное поле характеризуется совокупностью векторов электрических и магнитных со-ставляющих. Разные диапазоны электромагнитных волн имеют общую фи-зическую природу, но различаются энергией, характером распространения, поглощения, отражения и действием на среду, человека. Чем короче длина волны, тем больше энергии несет в себе квант.

    Основными характеристиками ЭМП являются:

    Напряженность электрического поля Е , В/м.

    Напряженность магнитного поля Н , А/м.

    Плотность потока энергии, переносимый электромагнитными волна-ми I , Вт/м 2 .

    Связь между ними определяется зависимостью:

    Связь энергии I и частоты f колебаний определяется как:

    где: f = с/l, а с = 3 × 10 8 м/с (скорость распространения электромагнит-ных волн), h = 6,6 × 10 34 Вт/см 2 (постоянная Планка).

    В пространстве. окружающем источник ЭМП выделяют 3 зоны (рис.9):

    а) Ближняя зона (индукции), где нет распространения волны, нет переноса энергии, а следовательно электрическая и магнитная со-ставляющая ЭМП рассматриваются независимо. Граница зоны R < l/2p.

    б) Промежуточная зона (дифракции), где волны накладываются друг на друга, образуя максимумы и стоячие волны. Границы зоны l/2p < R < 2pl. Основная характеристика зоны суммарная плотность потоков энергии волн.

    в) Зона излучения (волновая) с границей R > 2pl. Есть распространение волны, следовательно характеристикой зоны излучения является плотность потока энергии, т.е. коли-чество энергии, падающей на единицу поверхности I (Вт/м 2).

    Рис. 1.9 . Зоны существования электромагнитного поля

    Электромагнитное поле по мере удаления от источников излучения затухает обратно пропорционально квадрату расстояний от источника. В зоне индукции напряженность электрического поля убывает обратно пропорционально расстоянию в третьей степени, а маг-нитного поля обратно пропорционально квадрату расстояния.

    По характеру воздействия на организм человека ЭМП разделяют на 5 диапазонов:

    Электромагнитные поля промышленной частоты (ЭМП ПЧ): f < 10 000 Гц.

    Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ) f 10 000 Гц.

    Электромагнитные поля радиочастотной части спектра разбиваются на четыре поддиапазона:

    1) f от 10 000 Гц до 3 000 000 Гц (3 МГц);


    2) f от 3 до 30 МГц;

    3) f от 30 до 300 МГц;

    4) f от 300 МГц до 300 000 МГЦ (300 ГГц).

    Источниками электромагнитных полей промышленной частоты являются линии электропередач высокого напряжения, открытые распре-делительные устройства, все электрические сети и приборы, питающиеся переменным током 50 Гц. Опасность воздействия линий растет с увеличе-нием напряжения вследствие возрастания заряда, сосредоточенного на фазе. Напряженность электрического поля в районах прохождения высоко-вольтных линий электропередач может достигать нескольких тысяч вольт на метр. Волны этого диапазона сильно поглощаются почвой и на удале-нии 50-100 м от линии напряженность падает до нескольких десятков вольт на метр. При систематическом воздействии ЭП наблюдаются функцио-нальные нарушения в деятельности нервной и сердечно-сосудистой систе-мы. С возрастанием напряженности поля в организме наступают стойкие функциональные изменения в ЦНС . Наряду с биологическим действием электрического поля между человеком и металлическим предметом могут возникнуть разряды, обусловленные потенциалом тела, который достигает нескольких киловольт, если человек изолирован от Земли.

    Допустимые уровни напряженности электрических полей на рабочих местах устанавливаются ГОСТом 12.1.002-84 «Электрические поля промышленной частоты». Предельно до-пустимый уровень напряженности ЭМП ПЧ устанавливается в 25 кВ/м. Допустимое время пребывания в таком поле составляет 10 мин. Пребыва-ние в ЭМП ПЧ напряженностью более 25 кВ/м без средств защиты не допускает-ся, а в ЭМП ПЧ напряженностью до 5 кВ/м пребывание допускается в течение всего рабочего дня. Для расчета допустимого времени пребывания в ЭП при напряженно-сти свыше 5 до 20 кВ/м включительно используется формула Т = (50/Е ) - 2, где: Т - допустимое время пребывания в ЭМП ПЧ, (час); Е - напряженность электрической составляющей ЭМП ПЧ, (кВ/м).

    Санитарные нормы СН 2.2.4.723-98 регламентируют ПДУ магнитной составляющей ЭМП ПЧ на рабочих местах. Напряженность магнитной составляющей Н не должна превышать 80 А/м при 8-ми часовом пребывании в условиях этого поля.

    Напряженность электрической составляющей ЭМП ПЧ в жилой застройке и квартирах регламентируется СанПиН 2971-84 «Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты». Согласно этому документу, величина Е не должна превышать 0,5 кВ/м внутри жилых помещений и 1 кВ/м на территории городской застройки. Нормы ПДУ магнитной составляющей ЭМП ПЧ для жилой и городской среды в настоящее время не разработаны.

    ЭМИ РЧ используются для термообработки, плавки металлов, в радио-связи, медицине. Источниками ЭМП в производственных помещениях яв-ляются ламповые генераторы, в радиотехнических установках - антенные системы, в СВЧ-печах - утечки энергии при нарушении экрана рабочей камеры.

    ЭМИ РЧ придействии на организм вызывает поляризацию атомов и мо-лекул тканей, ориентацию полярных молекул, появление в тканях ионных токов, нагрев тканей за счет поглощения энергии ЭМП. Это нарушает структуру электрических потенциалов, циркуляцию жидкости в клетках ор-ганизма, биохимическую активность молекул, состав крови.

    Биологический эффектЭМИ РЧ зависит от его параметров: длины вол-ны, интенсивности и режима излучения (импульсный, непрерывный, пре-рывистый), от площади облучаемой поверхности, продолжительности об-лучения. Электромагнитная энергия частично поглощается тканями и пре-вращается в тепловую, происходит локальный нагрев тканей, клеток. ЭМИ РЧ ока-зывает неблагоприятное действие на ЦНС, вызывает нарушения в нервно-эндокринной регуляции, изменения в крови, помутнение хрусталика глаз (исключительно 4 поддиапазон), нарушения обменных процессов.

    Гигиеническое нормирование ЭМИ РЧ осуществляется со-гласно ГОСТ 12.1.006-84 «Электромагнитные поля радиочастот. Допусти-мые уровни на рабочих местах и требования к проведению контроля». Уровни ЭМП на рабочих местах контролируются измерением в диапа-зоне частот 60 кГц-300 МГц напряженности электрической и магнитных составляющих, а в диапазоне частот 300 МГц-300 ГГц плотности потока энергии (ППЭ) ЭМП с учетом времени пребывания в зоне облучения.

    Для ЭМП радиочастот от 10 кГц до 300 МГц регламентируется напряженность электрической и магнитной составляющей поля в зависимости от диапазо-на частот: чем выше частоты, тем меньше допускаемая величина напря-женности. Например, электрическая составляющая ЭМП для частот 10 кГц - 3МГц составляет 50 В/м, а для частот 50 МГц - 300 МГц только 5 В/м. В диапазоне частоты 300 МГц - 300 ГГц регламентируется плотность потока энергии излучения и создаваемая им энергетическая нагрузка, т.е. поток энергии, проходящий через единицу облучаемой поверхности за время действия. Максимальное значение плотности потока энергии не должно превышать 1000 мкВт/см 2 . Время пребывания в таком поле не должно превышать 20 мин. Пребывание в поле в ППЭ равном 25 мкВт/см 2 допускается в течение 8-ми часовой рабочей смены.

    В городской и бытовой среде нормирование ЭМИ РЧ осуществляется согласно СН 2.2.4/2.1.8-055-96 «Электромагнитные излучения радиочастотного диапазона». В жилых помещениях ППЭ ЭМИ РЧ не должна превышать 10 мкВт/см 2 .

    В машиностроении широко используется магнитно-импульсная и электрогидравлическая обработка металлов низкочастотным импульсным током 5-10 кГц (резка и обжатие трубчатых заготовок, штамповка, вырубка отверстий, очистка отливок). Источниками импульсного магнитного по-ля на рабочих местах являются открытые рабочие индукторы, электроды, тоководящие шины. Импульсное магнитное поле оказывает влияние на обмен веществ в тканях головного мозга, на эндокринные системы регуляции.

    Электростатическое поле (ЭСП) - это поле неподвижных электриче-ских зарядов, взаимодействующих между собой. ЭСП характеризуется на-пряженностью Е , то есть отношением силы, действующей в поле на то-чечный заряд, к величине этого заряда. Напряженность ЭСП измеряется в В/м. ЭСП возникают в энергетических установках, в электротехнологиче-ских процессах. ЭСП используется в электрогазоочистке, при нанесении лакокрасочных покрытий. ЭСП оказывает негативное влияние на ЦНС; у работающих в зоне ЭСП возникает головная боль, нарушение сна и др. В источниках ЭСП, помимо биологического воздействия, определенную опасность представляет аэроионы. Источником аэроионов является корона, возникающая на проводах при напряженности Е >50 кВ/м.

    Допустимые уровни напряженности ЭСП установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля». Допустимый уровень напряженности ЭСП устанавливается в зависимости от времени пребывания на рабочих местах. ПДУ напряженности ЭСП устанавливается равный 60 кВ/м в течение 1 часа. При напряженности ЭСП менее 20 кВ/м время пре-бывания в ЭСП не регламентируется.

    Основными характеристиками лазерного излучения являются: длина волны l, (мкм), интенсивность излучения, определяемая по величине энергии или мощно-сти выходного пучка и выражаемая в джоулях (Дж) или ваттах (Вт): дли-тельность импульса (сек), частота повторения импульса (Гц). Глав-ными критериями опасности лазера являются его мощность, длина волны, длительность импульса и экспозиция облучения.

    По степени опасности лазеры разделены на 4 класса: 1 - выходное излучение не опасно для глаз, 2 - опасно для глаз прямое и зеркально от-раженное излучение, 3 - опасно для глаз диффузно отраженное излуче-ние, 4 - опасно для кожи диффузно отраженное излучение.

    Класс лазера по степени опасности генерируемого излучения опреде-ляется предприятием-изготовителем. При работе с лазерами персонал под-вергается воздействию вредных и опасных производственных факторов.

    К группе физических вредных и опасных факторов при работе лазеров относят:

    Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное),

    Повышенное значение напряжения электропитания лазеров,

    Запыленность воздуха рабочей зоны продуктами взаимодействия ла-зерного излучения с мишенью, повышенный уровень ультрафиолетовой и инфракрасной радиации,

    Ионизирующие и электромагнитные излучения в рабочей зоне, по-вышенная яркость света от импульсных ламп накачки и взрывоопасность систем накачки лазеров.

    На персонал, обслуживающий лазеры, действуют химически опасные и вредные факторы, как-то: озон, окислы азота и другие газы, обусловлен-ные характером производственного процесса.

    Действие лазерного излучения на организм зависит от параметров излучения (мощности, длины волны, длительности импульса, частоты следования им-пульсов, времени облучения и площади облучаемой поверхности), локали-зация воздействия и особенности облучаемого объекта. Лазерное излуче-ние вызывает в облучаемых тканях органические изменения (первичные эффекты) и специфические изменения в самом организме (вторичные эф-фекты). При действии излучения происходит быстрый нагрев облучаемых тканей, т.е. термический ожог. В результате быстрого нагрева до высоких температур происходит резкое повышение давления в облучаемых тканях, что приводит к их механическому повреждению. Действия лазерного излу-чения на организм могут вызвать функциональные нарушения и даже пол-ную потерю зрения. Характер поврежденной кожи варьирует от легких до разной степени ожогов, вплоть до некрозов. Помимо изменений тканей, ла-зерное излучение вызывает функциональные сдвиги в организме.

    Предельно допустимые уровни облучения регламентируются «Сани-тарными нормами и правилами устройства и эксплуатации лазеров» 2392-81. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров. Для каждого режима работы, участка оптического диапазона величина ПДУ определяется по специальным таблицам. Дози-метрический контроль лазерного излучения осуществляют в соответствии с ГОСТ 12.1.031-81. При контроле измеряются плотность мощности непре-рывного излучения, плотность энергии импульсного и импульсно-модулированного излучения и другие параметры.

    Ультрафиолетовое излучение - это невидимое глазом электромаг-нитное излучение, занимающее промежуточное положение между светом и рентгеновским излучением. Биологически активную часть УФ-излучения делят на три части: А с длиной волны 400-315 нм, В с длиной волны 315-280 нм и С 280-200 нм. УФ-лучи обладают способностью вызывать фото-электрический эффект, люминесценцию, развитие фотохимических реак-ций, а также обладают значительной биологической активностью.

    УФ-излучения характеризуется бактерицидными и эритемными свойствами. Мощность эритемного излучения - это величина, характери-зующая полезное воздействие УФ-излучений на человека. За единицу эритемного излучения принят Эр, соответствующий мощности в 1 Вт для дли-ны волны 297 нм. Единица эритемной освещенности (облученности) Эр на квадратный метр (Эр/м 2) или Вт/м 2 . Доза облучения Нэр измеря-ется в Эр×ч/м 2 , т.е. это облучение поверхности за определенное время. Бактерицидность потока УФ-излучения измеряется в бакт. Соответственно бактерицидная облученность-бакт на м 2 , а доза бакт в час на м 2 (бк×ч/м 2).

    Источниками УФ-излучения на производстве являются электрическая дуга, автогенное пламя, ртутно-кварцевые горелки и другие температурные излучатели.

    Естественные УФ-лучи оказывают положительное влияние на организм. При недос-татке солнечного света возникает "световое голодание", авитаминоз Д, ос-лабление иммунитета, функциональные расстройства нервной системы. Вместе с тем УФ-излучение от производственных источников может стать причиной острых и хронических профессиональных заболеваний глаз. Острое поражение глаз называется электроофтальмия. Нередко обнаружи-вается эритема кожи лица и век. К хроническим поражениям следует отне-сти хронический коньюнктивит, катаракту хрусталика, кожные поражения (дерматиты, отеки с образованием пузырей).

    Нормирование УФ-излучения осуществляется согласно «Санитарные нормы ультрафиолетового излучения в производственных помещениях» 4557-88. При нормирова-нии устанавливается интенсивность излучения в Вт/м 2 . При поверхности облучения 0,2 м 2 в течение до 5 мин с перерывом 30 мин при общей про-должительности до 60 мин норма для УФ-А 50 Вт/ м 2 , для УФ-В 0,05 Вт/ м 2 и для УФ-С 0,01 Вт/ м 2 . При общей продолжительности облуче-ния 50% рабочей смены и однократном облучении 5 мин норма для УФ-А 10 Вт/ м 2 , для УФ-В 0,01 Вт/ м 2 при площади облучения 0,1 м 2 , а об-лучение УФ-С не допускается.



    Статьи по теме: