Графики интенсивности фотосинтеза. От чего зависит интенсивность фотосинтеза? Влияние на скорость фотосинтеза различных факторов От чего зависит скорость фотосинтеза

Интенсивность фотосинтеза

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО 2 , поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО 2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО 2 . Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО 2 , выделенного при дыхании, прибавляют к количеству СО 2 , поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14 СО 2).

В том случае, когда пересчет количества поглощенного СО 2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО 2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО 2 . Обратная величина названа квантовым выходом .

Ассимиляционное число – это соотношение между количеством СО 2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.

Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО 2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО 2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет. При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.

При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

Рис. 2.26. Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза): 1 – скорость выделения СО 2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО 2 , чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точка фотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО 2 , сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО 2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО 2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО 2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).


Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С 3 -растениях и в С 4 -растениях.


Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28). Рис. 2.28. Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО 2 нужно 686: 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114: 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Концентрация СО 2 . Для темновых реакций нужна двуокись углерода, которая включается в органические соединения. В обычных полевых условиях именно СО 2 является главным лимитирующим фактором. Концентрация СО 2 в атмосфере составляет 0,045 %, но если повышать ее, то можно увеличить и скорость фотосинтеза. При кратковременном действии оптимальная концентрация СО 2 составляет 0,5 %, однако при длительном воздействии возможно повреждение растений, поэтому оптимум концентрации в этом случае ниже – около 0,1 %. Уже сейчас некоторые тепличные культуры, например томаты, стали выращивать в атмосфере, обогащенной СО 2 .

В настоящее время большой интерес вызывает группа растений, которые намного эффективнее поглощают СО 2 из атмосферы и поэтому дают более высокий урожай – так называемые С 4 -растения.

В искусственных условиях зависимость фотосинтеза от концентрации СО 2 описывается в углекислотной кривой, которая напоминает световую кривую фотосинтеза (рис.2.29).

При концентрации СО 2 0,01 % скорость фотосинтеза равна скорости дыхания (компенсационная точка). Углекислотное насыщение наступает при 0,2–0,3 % СО 2 , а у некоторых растениях даже при этих концентрациях наблюдается небольшое увеличение фотосинтеза.

Рис. 2.29. Зависимость интенсивности фотосинтеза хвои сосны от концентрации СО 2 в воздухе

В природных условиях зависимость фотосинтеза от концентрации СО 2 описывается только линейной частью кривой. Отсюда следует, что обеспеченность растений СО 2 в природных условиях является фактором, который лимитирует урожай. Поэтому целесообразно выращивать растения в закрытых помещениях с повышенным содержанием СО 2 .

Температура оказывает заметное влияние на процесс фотосинтеза, поскольку темновые, а отчасти и световые реакции фотосинтеза контролируются ферментами. Оптимальная температура для растений умеренного климата обычно составляет около 25 о С.

Поглощение и восстановление СО 2 у всех растений с повышением температуры увеличиваются, пока не будет достигнут некоторый оптимальный уровень. У большинства растений умеренной зоны снижение интенсивности фотосинтеза начинается уже после 30 о С, у некоторых южных видов после 40 о С. При большой жаре (50–60 о С), когда начинается инактивация ферментов, а также нарушается согласованность разных реакций, фотосинтез быстро прекращается. По мере повышения температуры интенсивность дыхания повышается значительно быстрей, чем интенсивность естественного фотосинтеза. Это влияет на величину наблюдаемого фотосинтеза. Зависимость интенсивности наблюдаемого фотосинтеза от температуры описывается температурной кривой, в которой выделяют три основные точки: минимум, оптимум и максимум.

Минимум – та температура при которой фотосинтез начинается, оптимум – температура, при которой фотосинтез наиболее устойчивый и достигает наибольшей скорости, максимум – та температура, после достижения которой фотосинтез прекращается (рис. 2.30).

Рис. 2.30. Зависимость интенсивности фотосинтеза от температуры листа: 1 – хлопчатник; 2 – подсолнечник; 3 – сорго

Влияние кислорода . Более полувека назад было отмечено на первый взгляд парадоксальное явление. Кислород воздуха, который является продуктом фотосинтеза, является одновременно и его ингибитором: выделение кислорода и поглощение СО 2 падают по мере увеличения концентрации О 2 в воздухе. Этот феномен назвали именем его открывателя – эффект Варбурга. Этот эффект присущ всем С 3 -растениям. И только в листьях С 4 -растений его не удалось выявить. Сейчас твердо установлено, что природа эффекта Варбурга связана с оксигеназными свойствами основного фермента цикла Кальвина – РДФ-карбоксилазы. При большой концентрации кислорода начинается фотодыхание. Установлено, что при снижении концентрации О 2 до 2–3 % фосфогликолат не образуется, исчезает и эффект Варбурга. Таким образом, оба эти явления – проявление оксигеназных свойств РДФ-карбоксилазы и образование гликолата, а также уменьшение фотосинтеза в присутствии О 2 тесно связаны один с другим.

Очень низкое содержание О 2 или полное отсутствие, как и увеличение концентрации до 25–30 %, тормозит фотосинтез. Для большинства растений некоторое снижение природной концентрации (21 %) О 2 активирует фотосинтез.

Влияние оводненности тканей . Как уже отмечалось, вода участвует в световой стадии фотосинтеза как донор водорода для восстановления СО 2 . Однако, роль лимитирующего фотосинтез фактора играет не минимальное количество воды (приблизительно 1 % поступившей), а та вода, которая входит в состав клеточных мембран и является средой для всех биохимических реакций, активирует ферменты темновой фазы. Кроме того, от количества воды в замыкающих клетках зависит степень открытия устьиц, а тургорное состояние всего растения определяет расположение листьев по отношению к солнечным лучам. Количество воды косвенно влияет на изменение скорости отложения крахмала в строме хлоропласта и даже на изменение структуры и расположение тилакоидов в строме.

Зависимость интенсивности фотосинтеза от оводненности тканей растений, как и зависимость от температуры, описывается переходной кривой, имеющей три основные точки: минимум, оптимум и максимум.

При обезвоживании меняется не только интенсивность фотосинтеза, но и качественный состав продуктов фотосинтеза: меньше синтезируется малата, сахарозы, органических кислот; больше – глюкозы, фруктозы аланина и других аминокислот.

К тому же установлено, что при нехватке воды в листьях накапливается АБК – ингибитор роста.

Концентрация хлорофилла , как правило, не бывает лимитирующим фактором, однако количество хлорофилла может уменьшаться при различных заболеваниях (мучнистая роса, ржавчина, вирусные болезни), недостатке минеральных веществ и с возрастом (при нормальном старении). Когда листья желтеют, говорят, что они становятся хлоротичными, а само явление называют хлорозом. Хлоротические пятна на листьях часто бывают симптомом заболевания или недостатка минеральных веществ.

Хлороз может быть вызван и недостатком света, так как свет нужен для конечной стадии биосинтеза хлорофилла.

Минеральные элементы. Для синтеза хлорофилла нужны и минеральные элементы: железо, магний и азот (два последних элемента входят в его структуру), потому они особенно важны для фотосинтеза. Важен также калий.

Для обычного функционирования фотосинтетического аппарата растение должно быть обеспечено необходимым количеством (оптимальным) минеральных элементов. Магний, кроме того, что входит в состав хлорофилла, участвует в действии сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановление НАДФ + .

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Нехватка железа нарушает циклическое и нециклическое фотофосфорилирование, синтез пигментов, изменение структуры хлоропластов.

Марганец и хлор принимают участие в фотоокислении воды.

Медь входит в состав пластоцианина.

Недостаток азота оказывает влияние не только на формирование пигментных систем и структур хлоропластов, но и на количество и активность РДФ-карбоксилазы.

При недостатке фосфора нарушаются фотохимические и темновые реакции фотосинтеза.

Калий играет полифункциональную роль в ионной регуляции фотосинтеза, при его недостатке в хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, т. е. нарушаются все процессы фотосинтеза.

Возраст растений. Только после создания фитотронов, где можно выращивать растения в контролируемых условиях, удалось получить надежные результаты. Выявлено, что во всех растениях только в самом начале жизненного цикла, когда формируется фотосинтетический аппарат, интенсивность фотосинтеза увеличивается, очень быстро достигает максимума, затем немного уменьшается и дальше меняется очень мало. Например, у злаков фотосинтез достигает максимальной интенсивности в фазу кущения. Это объясняется тем, что максимальная фотосинтетическая активность листа совпадает с окончанием периода его формирования. Затем начинается старение и уменьшение фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от структуры хлоропластов. При старении хлоропластов разрушаются тилакоиды. Доказывают это с помощью реакции Хила. Она идет тем хуже, чем больший возраст хлоропластов. Таким образом, показано, что интенсивность определяется не количеством хлорофилла, а структурой хлоропласта.

В оптимальных условиях влажности и азотного питания снижение фотосинтеза с возрастом происходит медленнее, так как в этих условиях хлоропласты медленнее стареют.

Генетические факторы. Процессы фотосинтеза в определенной степени зависят от наследственности растительного организма. Интенсивность фотосинтеза различна у растений разных систематических групп и жизненных форм. У трав интенсивность фотосинтеза выше, чем у древесных растений (табл. 2.5).

Интенсивность процесса фотосинтеза может быть выражена в сле­дующих единицах: в миллиграммах СО 2 , ассимилированной 1 дм 2 листа за 1 ч; в миллилитрах О 2 , выделенного 1 дм 2 листа за 1 ч; в миллиграммах сухого вещества, накопленного 1 дм 2 листа за 1 ч.

При интерпретации данных, полученных любым методом, следует иметь в виду, что на свету растения не только фотосинтезируют, но и дышат. В связи с этим все измеренные тем или иным методом по­казатели представляют собой результат двух прямо противоположных процессов, или разность между показателями процессов фотосинтеза и дыхания. Это видимый фотосинтез. Так, например, наблюдаемое изменение содержания СО 2 - это разность между тем его количест­вом, которое поглощено в процессе фотосинтеза, и тем, которое вы­делилось в процессе дыхания. Для того чтобы перейти к истинной величине фотосинтеза, во всех случаях необходимо вносить поправ­ку, учитывающую интенсивность процесса дыхания.

Влияние внешних условий на интенсивность процесса фотосинтеза

В естественной обстановке все факторы взаимодействуют друг с другом, т. е. действие одного фактора зависит от напряженности всех остальных. В общем виде это можно сформулировать так: изменение напряженности одного фактора при неизменности прочих влияет на фотосинтез, начиная от минимального уровня, при котором процесс начинается, и, кончая оптимумом, при достижении которого процесс перестает изменяться (кривая выходит на плато). Во многих случаях увеличение напряженности фактора после определенного уровня при­водит даже к торможению процесса. Однако если начать изменять какой-либо другой фактор, то оптимальное значение напряженности первого фактора меняется в сторону увеличения. Иначе говоря, пла­то достигается при более высоком значении напряженности. Скорость процесса, в частности скорость фотосинтеза, зависит в первую оче­редь от напряженности того фактора, который находится в минимуме (ограничивающий фактор). В качестве примера можно привести взаимодействие таких факторов, как интенсивность света и содер­жание СО 2 . Чем выше содержание углекислоты (в определенных пределах), тем при более высокой освещенности показатели фото­синтеза выходят па плато.

Влияние света

Увеличение интенсивности освещения сказывается на процессе фотосинтеза различие в зависимости от типа растения и напряжен­ности других факторов. Растения в процессе исторического развития приспособились к произрастанию в различных условиях освещен­ности. По этому признаку растения разделяют на группы: светолюбивые, теневыносливые и тенелюбивые. Эти эко­логические группы характеризуются рядом анатомо-физиологических особенностей. Они различаются по содержанию и составу пиг­ментов.

Светолюбивые растения характеризуются более светлой окраской листьев, меньшим общим содержанием хлорофилла по сравнению с теневыносливыми. В листьях теневыносливых растений по сравне­нию со светолюбивыми относительно высокое содержание ксантофилла и хлорофилла b. Эта особенность в составе пигментов позволяет листьям теневыносливых растений использовать «отработанный свет», уже прошедший через листья светолюбивых растений. Свето­любивые растения - это растения открытых местообитаний, которые чаще испытывают недостаток водоснабжения. В связи с этим их ли­стья по сравнению с теневыносливыми обладают более ксероморфиой анатомической структурой, отличаются большей толщиной, более сильно развитой палисадной паренхимой. У некоторых светолюбивых растений палисадная паренхима располагается не только с верхней, но и с нижней стороны листа. Листья светолюбивых растений по сравнению с теневыносливыми характеризуются также более мелки­ми клетками, более мелкими хлоропластами, меньшей величиной устьиц при большем их количестве на единицу поверхности листа, более густой сетью жилок.

Светолюбивые и теневыносливые растения отличаются и по фи­зиологическим признакам. Большое содержание пигментов позволя­ет теневыносливым растениям лучше использовать малые количества света. У светолюбивых растений интенсивность фотосинтеза увеличи­вается при возрастании интенсивности освещения в более широких пределах. Важной особенностью, определяющей возможность расте­ний произрастать при большей или меньшей освещенности, является положение компенсационной точки. Под компенсационной точкой по­нимается та освещенность, при которой процессы фотосинтеза и ды­хания уравновешивают друг друга. Иначе говоря, это та освещен­ность, при которой растение за единицу времени образует в процес­се фотосинтеза столько органического вещества, сколько оно тратит в процессе дыхания. Естественно, что рост зеленого растения может идти только при освещенности выше компенсационной точки. Чем ниже интенсивность дыхания, тем ниже компенсационная точка и тем при меньшей освещенности растения растут. Теневыносливые растения характеризуются более низкой интенсивностью дыхания, что и позволяет им расти при меньшей освещенности. Компенсаци­онная точка заметно растет с повышением температуры, так как по­вышение температуры сильнее увеличивает дыхание по сравнению с фотосинтезом. Именно поэтому при низкой освещенности повыше­ние температуры может снизить темпы роста растений.

Для фотосинтеза, как и для всякого процесса, включающего фо­тохимические реакции, характерно наличие нижнего порога осве­щенности, при котором он только начинается (около одной свечи на расстоянии 1 м). В целом зависимость фотосинтеза от интенсивности освещения может быть выражена логарифмической кривой. Первона­чально увеличение интенсивности освещения приводит к пропорцио­нальному усилению фотосинтеза (зона максимального эффекта). При дальнейшем увеличении интенсивности света фотосинтез про­должает возрастать, но медленнее (зона ослабленного эффекта) и, наконец, интенсивность света растет, а фотосинтез не изменяется (зона отсутствия эффекта - плато). Наклон кривых, выражающих зависимость интенсивности фотосинтеза от освещенности, различен для разных растений. Есть растения, у которых фотосинтез возрас­тает вплоть до освещения их прямыми солнечными лучами. Вместе с тем для многих растений увеличение интенсивности освещения свыше 50% от прямого солнечного света оказывается уже излиш­ним. Это обстоятельство связано с тем, что конечный выход продук­тов фотосинтеза зависит от скорости не столько световых, сколько темповых реакций. Между тем интенсивность освещения влияет на скорость лишь световых реакций. Следовательно, для того чтобы интенсивность света оказывала влияние после достижения определен­ного уровня, необходимо увеличить скорость темновых реакций. В свою очередь, скорость темновых реакций фотосинтеза в большой степени зависит от температуры и содержания углекислоты. С повы­шением температуры или с увеличением содержания углекислоты оп­тимальная освещенность меняется в сторону увеличения.

В естественных условиях из-за взаимного затенения па нижние листья падает лишь небольшая доля солнечной энергии. Так, в густом посеве растений вики в стадии цветения интенсивность света в при­земном слое составляет всего 3% от полного дневного освещения. Часто нижние листья освещаются светом, близким к"компенсацион­ной точке. Таким образом, в посевах общая интенсивность фотосин­теза всех листьев растений может возрастать вплоть до уровня, со­ответствующего полной интенсивности солнечного света.

При очень высокой интенсивности света, прямо попадающего на лист, может наблюдаться депрессия фотосинтеза. На начальных эта­пах депрессии, вызванной высокой интенсивностью света, хлоро-пласты передвигаются к боковым стенкам клетки (фототаксис). При дальнейшем возрастании освещенности интенсивность фотосинтеза может резко сокращаться. Причиной депрессии фотосинтеза ярким светом могут служить перегрев и нарушение водного баланса. Воз­можно, на ярком свету возникает избыток возбужденных молекул хлорофилла, энергия которых тратится на окисление каких-то фер­ментов, необходимых для нормального протекания процесса фото­синтеза.

Коэффициент использования солнечной энергии

В ясный солнечный день на 1 дм 2 листовой поверхности за 1 ч падает около 30 168 кДж. Из этого количества поглощается пример­но 75 %, или 22 626 кДж, 25 % падающей энергии проходят через лист и отражаются от него. Исходя из количества сухого вещества, накапливаемого листом за определенный промежуток времени рассчитали количество запасаемой энергии и сопоставили его с тем количеством, которое лист получает. Согласно полученным данным, КПД фотосинтеза оказался равным 2,6%. Можно еще более просто подойти к расчету интересующей нас величины. Так, одно растение кукуру­зы накапливает за сутки в среднем 18,3 г сухого вещества. Можно принять, что все это вещество - крахмал. Теплота сгорания 1 г крахмала будет 17,6 кДж. Следовательно, суточная прибыль энергии составит (18,3X17,6) 322 кДж. При густоте на 1 га 15 тыс. расте­ний поле в 1 га за сутки накапливает 4830651 кДж, а получает за день 209 500 000 кДж. Таким образом, использование энергии состав­ляет 2,3%.

Следовательно, расчеты показывают, что КПД процесса фотосин­теза в естественных условиях ничтожно мал. Задача повышения КПД использования солнечной энергии является одной из важней­ших в физиологии растений. Эта задача вполне реальна, так как тео­ретически КПД процесса фотосинтеза может достигать значительно большей величины.

Влияние температуры

Влияние температуры па фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (Q 10 = 1). Это связано с тем, что при низкой освещенности интенсивность фотосинтеза лимитируется скоростью световых фотохимических реакций. Напротив, при высокой осве­щенности скорость фотосинтеза определяется протеканием темновых реакций, и в этом случае влияние температуры проявляется очень отчетливо. Температурный коэффициент Q 10 может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. Темпера­турные пределы, в которых возможно осуществление процессов фо­тосинтеза, различны для разных растений. Минимальная температу­ра для фотосинтеза растений средней полосы около 0°С, для тропи­ческих растений 5-10°С. Имеются данные, что полярные растения могут осуществлять фотосинтез и при температуре ниже 0°С. Опти­мальная температура фотосинтеза для большинства растений со­ставляет примерно 30-33°С. При температуре выше 30-33°С ин­тенсивность фотосинтеза резко падает. Это связано с тем, что зави­симость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темновых реакций фотосинтеза. Одновременно при температуре 25-30°С происходит процесс инак­тивации хлоропластов. Повышение температуры может вызвать так­же закрытие устьичных щелей.

Влияние содержания СО 2 в воздухе

Источником углерода для процесса фотосинтеза является угле­кислый газ. Попытки заменить углекислый газ угарным (СО) не увенчались успехом. В основном в процессе фотосинтеза использует­ся СО 2 атмосферы. Содержание СО 2 в воздухе составляет всего 0,03%. Процесс фото­синтеза осуществляется при содержании СО 2 не менее 0,008%. Повышение содержания СО 2 до 1,5% вызывает прямо пропорциональное возрастание интенсивности фотосинтеза. При повышении содер­жания СО 2 свыше 1,5% фотосинтез продолжает возрастать, но уже значительно медленнее. При увеличении содержания СО 2 до 15-20% процесс фотосинтеза выходит па плато. При содержании СО 2 выше 70% наступает депрессия фотосинтеза. Есть растения, более чувст­вительные к повышению концентрации СО 2 , у которых торможение фотосинтеза начинает проявляться уже при содержании СО 2 , рав­ном 5%. Повышение концентрации СО 2 оказывает ингибирующее влияние в силу разных причин. Прежде всего, увеличение содержа­ния СО 2 вызывает закрытие устьиц. Вместе с тем высокие концентра­ции СО 2 сказываются особенно неблагоприятно при высокой осве­щенности. Последнее заставляет полагать, что СО 2 в определенных концентрациях ингибирует темновые ферментативные реакции.

В естественных условиях содержание СО 2 настолько мало, что может ограничивать возрастание процесса фотосинтеза. Надо еще учесть, что в дневные часы содержание СО 2 в воздухе вокруг расте­ний понижается.

В связи со сказанным увеличение содержания СО 2 в воздухе яв­ляется одним из важных способов повышения интенсивности фото­синтеза и, как следствие, накопления сухого вещества растением. Однако в полевых условиях регулирование содержания СО 2 затруд­нено. Частично это может быть достигнуто с помощью поверхност­ного внесения навоза или других органических удобрений (мульчи­рование). Легче достигается повышение содержания СО 2 в закры­том грунте. В этом случае подкормки СО 2 дают хорошие резуль­таты и должны быть широко используемы. Разные растения неодинаково используют одни и те же концентрации СО 2 . Растения, у которых фотосинтез идет по «С-4» пути (кукуруза), обладают более высокой способностью к связыванию СО 2 благодаря высокой актив­ности фермента фосфоенолпируваткарбоксилазы.

Влияние снабжения водой

Небольшой водный дефицит (5-15%) в клетках листьев оказы­вает благоприятное влияние на интенсивность фотосинтеза. При полной насыщенности водой клеток листа фотосинтез снижается. Частично это может быть связано с тем, что при полном насыщении клеток мезофилла замыкающие устьичные клетки оказываются несколько сдавленными, устьичные щели не могут открыться (гидропассивные движения). Однако дело не толь­ко в этом. Небольшое обезвоживание_листьев сказывается благопри­ятно на процессе фотосинтеза и вне зависимости от степени откры­тия устьиц. Увеличение вод­ного дефицита свыше 15-20% приводит к заметному снижению интенсивности фотосинтеза. Это связано в первую очередь с закры­тием устьиц (гидроактивные движения), что резко уменьшает диф­фузию СО 2 в лист. Кроме того, это вызывает сокращение транспирации, как следствие, температура листьев возрастает. Между тем по­вышение температуры выше 30°С вызывает снижение фотосинтеза. Наконец обезвоживание оказывает влияние на конформацию, а сле­довательно, и активность ферментов, принимающих участие в тем­повой фазе фотосинтеза.

Снабжение кислородом и интенсивность фотосинтеза

Несмотря на то, что кислород является одним из продуктов про­цесса фотосинтеза, в условиях полного анаэробиоза процесс фотосин­теза останавливается. Можно полагать, что влияние анаэробиоза косвенное, связано с торможением процесса дыхания и накоплением продуктов неполного окисления, в частности органических кислот. Это предположение подтверждается тем, что вредное влияние ана­эробиоза сказывается более резко в кислой среде. Повышение кон­центрации кислорода (до 25%) также тормозит фотосинтез (эффект Варбурга).

Тормозящее влияние высоких концентраций кислорода на фото­синтез проявляется особенно резко при повышенной интенсивности света. Эти наблюдения заставили обратить внимание на особенности процесса дыхания в присутствии света (фотодыхание). Химизм это­го процесса отличен от обычного темнового дыхания. Фотодыхание - это поглощение кислорода и выделение СО 2 па свету в использовани­ем в качестве субстрата промежуточных продуктов цикла Кальвина. По-видимому, образующаяся в цикле Кальвина фосфоглицериновая кислота в процессе фотодыхания окисляется и декарбоксилируется до гликолевой кислоты, а гликолевая кислота окисляется до глиоксилевой кислоты. Образование гликолевой кислоты происходит в хлоропластах, однако там не накапливается, а транспортируется в осо­бые органеллы пероксисомы. В пероксисомах происходит превращение гликолевой кислоты в глиоксилевую кислоту. Глиоксилевая кис­лота, в свою очередь, подвергается аминированию, а затем декарбоксилированию, при этом выделяется углекислый газ.

Выделение СО 2 при фотодыхании может достигать 50% от всего СО 2 , усвоенного в процессе фотосинтеза. В связи с этим можно пола­гать, что уменьшение интенсивности фотодыхания должно привести к повышению продуктивности растений. Так, мутантные формы та­бака, не обладающие способностью к образованию гликолевой кис­лоты, отличаются повышенным накоплением сухой массы. Имеются данные, что некоторое уменьшение содержания кислорода в атмос­фере сказывается благоприятно на темпах накопления сухого веще­ства проростками. У кукурузы и других растений, осуществляющих фотосинтез по «С-4» пути фотодыхание не идет. Не исключено, что такой тип обмена способствует большей продуктивности этих рас­тений.

Влияние минерального питания

Влияние калия на фотосинтез многосторонне. При недостатке ка­лия интенсивность фотосинтеза снижается уже через короткие про­межутки времени. Калий может влиять на фотосинтез косвенно, че­рез повышение оводненности цитоплазмы, ускорение оттока ассимилятов из листьев, увеличение степени открытия устьиц. Вместе с тем имеет место и прямое влияние калия, поскольку он активирует про­цессы фосфорилирования.

Очень велико значение фосфора для фотосинтеза. На всех этапах фотосинтеза принимают участие фосфорилированные соединения. Энергия света аккумулируется в фосфорных связях.

В последнее время много внимания уделяется выяснению роли марганца. При изучении фотосинтеза штамма хлореллы, который может расти как в темноте за счет готового органического вещества, так и на свету, было показано, что марганец необходим только в последнем случае. Для тех микроорганизмов, которые осуществляют процесс фоторедукции, марганец не нужен. Вместе с тем отсутствие марганца резко угнетает реакцию Хилла и процесс нециклического фотофосфорилирования. Все это доказывает, что роль марганца оп­ределяется его участием в реакциях фотоокисления воды.

Многие соединения, функционирующие как переносчики, содер­жат железо (цитохромы, ферредоксин) или медь (пластоцианин). Естественно, что при недостатке этих элементов интенсивность фо­тосинтеза понижается.

Исследовательская работа

Тема: Влияние различных факторов на скорость фотосинтеза

Руководитель работы: Логвин Андрей Николаевич, учитель биологии

д.Шелоховская

2009

Введение - стр.3

Глава 1. Фотосинтез – стр.4

Глава 2. Абиотические факторы - свет и температура. Их роль для жизни растений – стр.5

2.1. Свет- стр.5

2.2. Температура - стр.6

2.3. Газовый состав воздуха - стр.7

Глава 3. Влияние различных факторов на скорость фотосинтеза – стр.983.1. Метод «крахмальной пробы» – стр.9

3.2. Зависимость фотосинтеза от интенсивности освещения – стр.10

3.3. Зависимость интенсивности фотосинтеза от температуры – стр.11

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере – стр.12

Заключение – стр.12

Источники информации – стр.13

Ведение

Жизнь на Земле зависит от Солнца. Приемником и накопителем энергии солнечных лучей на Земле являются зеленые листья растений как специализированные органы фотосинтеза. Фотосинтез - уникальный процесс создания органических веществ из неорганических. Это единственный на нашей планете процесс, связанный с превращением энергии солнечного света в энергию химических связей, заключенную в органических веществах. Таким способом поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира - от бактерий до человека.

Выдающийся русский ученый конца XIX - начала XX в. Климент Аркадьевич Тимирязев (1843-1920) роль зеленых растений на Земле назвал космической.

К.А. Тимирязев писал: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».

Актуальность выбранной темы обусловлена тем что Все мы зависим от фотосинтезирующих растений и необходимо знать, какими способами можно повысить интенсивность фотосинтеза..

Объект исследования – комнатные растения

Предмет исследования – влияние различных факторов на скорость фотосинтеза.

Цели:

  1. Систематизация, углубление и закрепление знаний по фотосинтезу растений и абиотическим факторам окружающей среды.

2. Изучить зависимость скорости фотосинтеза от интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Задачи:

  1. Изучить литературу по фотосинтезу растений, обобщить и углубить знания о влиянии абиотических факторов на фотосинтез растений.
  2. Изучить влияние различных факторов на скорость фотосинтеза.

Гипотеза исследования: Скорость фотосинтеза возрастает при увеличении интенсивности освещения, температуры и концентрации углекислого газа в атмосфере.

Методы исследования:

  1. Изучение и анализ литературы
  2. Наблюдение, сравнение, эксперимент.

Глава 1. Фотосинтез.

Процесс образования клетками зеленых растений и циано-бактериями органических веществ с участием света. В зеленых растениях происходит при участии пигментов (хлорофиллов и некоторых других), имеющихся в хлоропластах и хроматофорах клеток. Из веществ, бедных энергией (оксид углерода и вода), образуется углевод глюкоза и освобождается свободный кислород.

В основе фотосинтеза лежит окислительно-восстановитсльный процесс: электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (оксид углерода, ацетат). Образуется восстановленное вещество (углевод глюкоза) и кислород, если окисляется вода. Различают две фазы фотосинтеза:

Световая (или светозависимая);

Темновая.

В световую фазу происходит накопление свободных атомов дорода, энергии (синтезируется АТФ). Темновая фаза фотосинтеза - ряд последовательных ферментативных реакций, и прежде всего реакций связывания углекислого газа (проникает в лист из атмосферы). В итоге образуются углеводы, сначала моносахариды (гексоза), затем - сахариды и полисахариды (крахмал). Синтез глюкозы идет с поглощением большого количества энергии (используется АТФ, синтезированная в световую фазу). Для удаления лишнего кислорода из диоксида углерода ис- пользуется водород, образовавшийся в световую фазу и находящийся в непрочном соединении с переносчиком водородм (НАДФ). Лишний кислород оказывается в связи с тем, что в диоксиде углерода число атомов кислорода вдвое больше, чем число атомов углерода, а в глюкозе число атомов углерода и кислорода равное.

Фотосинтез - единственный процесс в биосфере, ведущий к увеличению энергии биосферы за счет внешнего источника - Солнца и обеспечивающий существование как растений, так и всех гетеротрофных организмов.

В урожай переходит менее 1-2% солнечной энергии.

Потери: неполное поглощение света; лимитирование процесса на биохимических и физиологических уровнях.

Пути повышения эффективности фотосинтеза:

Обеспечение растений водой;

Обеспечение минеральными веществами и углекислым газом;

Создание благоприятной для фотосинтеза структуры посевов;

Селекция сортов с высокой эффективностью фотосинтеза.

Глава 2. Абиотические факторы - свет и температура.

Их роль для жизни растений.

Абиотическими факторами называются все элементы неживой природы, влияющие на организм. Среди них наиболее важными являются свет, температура, влажность, воздух, минеральные соли и др. Часто их объединяют в группы факторов: климатические, почвенные, орографические, геологические и др.

В природе трудно отделить действие одного абиотического фактора от другого, организмы всегда испытывают их совместное влияние. Однако для удобства изучения абиотические факторы обычно рассматриваются по отдельности.

2.1. Свет

Среди многочисленных факторов свет как носитель солнечной энергии является одним из основных. Без него невозможна фотосинтетическая деятельность зеленых растений. В то же время прямое воздействие света на протоплазму смертельно для организма. Поэтому многие морфологические и поведенческие свойства организмов обусловлены действием света.

Солнце излучает в космическое пространство громадное количество энергии, и хотя на долю Земли приходится лишь одна двухмиллионная часть солнечного излучения, его хватает на обогрев и освещение нашей планеты. Солнечное излучение - это электромагнитные волны самой разной длины, а также радиоволны длиной не более 1 см.

Среди солнечной энергии, проникающей в атмосферу Земли, имеются видимые лучи (их около 50%), теплые инфракрасные лучи (50%) и ультрафиолетовые лучи (около 1%). Для экологов важны качественные признаки света: длина волны (или цвет), интенсивность (действующая энергия в калориях) и продолжительность воздействии (длина дни).

Видимые лучи (мы называем их солнечным светом) состоят из лучей разной окраски и разной длины волн. Свет имеет очень большое значение в жизни всего органического мира, так как с ним связана активность животных и растений - только в условиях видимого света протекает фотосинтез.

В жизни организмов важны не только видимые лучи, но и другие виды лучистой энергии, достигающие земной поверхности: ультрафиолетовые и инфракрасные лучи, электромагнитные (особенно радиоволны) и даже гамма- и икс-излучение. К примеру, ультрафиолетовые лучи с длиной волны 0,38-0,40 мк обладают большой фотосинтезирующей активностью. Эти лучи, особенно когда они представлены в умеренных дозах, стимулируют рост и размножение клеток, способствуют синтезу высокоактивных биологических соединений, повышая в растениях содержание витаминов и антибиотиков, увеличивают устойчивость растительных клеток к различным заболеваниям.

Среди всех лучей солнечного света обычно выделяются лучи, так или иначе оказывающие влияние на растительные организмы, особенно на процесс фотосинтеза, ускоряя или замедляя его протекание. Эти лучи принято называть физиологически активной радиацией (сокращенно - ФАР). Наиболее активными среди ФАР являются: оранжево-красные (0,65-0,68 мк), сине-фиолетовые (0,40-0,50 мк) и близкие ультрафиолетовые (0,38-0,40 мк). Меньше всего поглощаются желто-зеленые лучи (0,50-0,58 мк) и почти не поглощаются инфракрасные. Лишь далекие инфракрасные лучи с длиной волны более 1,05 мк принимают участие в теплообмене растений и потому оказывают некоторое положительное воздействие, особенно в местах с низкими температурами.

Зеленым растениям свет нужен для образования хлорофилла, формирования гранальнои структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспира-цию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот. Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цзетения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза.

2.2. Температура

Тепловой режим - одно из важнейших условий существования организмов, так как все физиологические процессы возможны лишь при определенных температурах. Приход тепла на земную поверхность обеспечивается солнечными лучами и распределяется по Земле в зависимости от высоты стояния Солнца над горизонтом и угла падения солнечных лучей. Поэтому тепловой режим неодинаков на разных широтах и на разной высоте над уровнем моря.

Температурный фактор характеризуется ярко выраженными сезонными и суточными колебаниями. Это действие фактора в ряде районов Земли имеет важное сигнальное значение в регуляции сроков активности организмов, обеспечивая их суточный и сезонный режим жизни.

В характеристике температурного фактора очень важны его крайние показатели, продолжительность их действия, а также то, как часто они повторяются. Изменение температуры в местах обитания, выходящее за пределы пороговой терпимости организмов, сопровождается их массовой гибелью.

Значение температуры для жизнедеятельности организмов проявляется в том, что она изменяет скорость физико-химических процессов в клетках. Температура влияет на анатомо-морфологические особенности организмов, оказывает воздействие на ход физиологических процессов, рост, развитие, поведение и во многих случаях определяет географическое распространение растений.

2.3. Газовый состав воздуха.

Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот - 78,1, кислород - 21,0, аргон -0,9, углекислый газ - 0,03% по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений, и сезонные, обусловленные изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.

В природе основным источником углекислоты является так называемое почвенное дыхание. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя.

В современных условиях мощным источником поступления дополнительных количеств С0 2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.

Низкое содержание углекислого газа тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим пользуются в практике тепличного и оранжерейного хозяйства. Однако излишние количества С0 2 приводят к отравлению растений.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд микроорганизмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам- метану, оксиду серы (IV), оксиду углерода (II), оксиду азота (IV), сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (S0 2 ), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность. Некоторые виды растений особо чувствительны к S0 2 и служат чутким индикатором его накопления в воздухе. Например, лишайники погибают даже при следах оксида серы (IV) в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клеи американский, бузина и некоторые другие.

Глава 3. Влияние различных факторов на скорость фотосинтеза.

Скорость процесса фотосинтеза зависит как от интенсивности света, так и от температуры. Лимитирующими факторами фотосинтеза могут быть также концентрация диоксида углерода, вода, элементы минерального питания, участвующие в построении фотосинтезирующего аппарата и являющиеся исходными компонентами для фотосинтеза органического вещества.

При определении интенсивности фотосинтеза используют две группы методов: 1) газометрические - регистрирующие количество поглощенного углекислого газа или выделенного кислорода; 2) методы учета количества образующегося при фотосинтезе органического вещества.

Простой и наглядный метод "крахмальной пробы". Метод основан на обнаружении и оценке количества накопленного при фотосинтезе крахмала с помощью раствора иода в йодистом калии.

3.1. Метод «крахмальной пробы»

Цель . Познакомиться с методом «крахмальной пробы».

Методика опыта.

Обильно полейте растение, поставьте в теплое темное место (в шкаф или ящик) или затемните отдельные листья темными пакетами из плотной черной бумаги. В темноте листья постепенно теряют крахмал, который гидролизует-ся до Сахаров и используется на дыхание, рост, отводится в другие органы.

Через 3 - 4 сут. проверьте обескрахмаливание листьев. Для этого вырежьте из затемненного листа кусочки, поме тите в пробирку с водой (2 - 3 мл) и прокипятите 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слейте воду и прокипятите несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветится (кипятить надо на водяной бане, так как при пользовании спиртовкой спирт может вспыхнуть!). Слейте последнюю порцию спирта, добавьте немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместите кусочек ткани в чашку Петри и обработайте раствором иода. При полном обескрах-маливании синее окрашивание отсутствует и с такими листьями можно ставить опыт. При наличии даже небольшого количества крахмала работать с листом не следует, так как это затруднит наблюдение за образованием крахмала. Обескрахмаливание следует продлить еще на 1 - 2 сут.

Лишенные крахмала листья необходимо срезать с растения, обновить срез под водой и опустить черешок в пробирку с водой. Лучше работать со срезанными листьями, так как вновь образованный крахмал в этом случае не оттекает в другие органы.

Листья помещают в различные условия, предусмотренные задачами настоящей работы. Для накопления крахмала листья следует держать на расстоянии не менее 30-40 см от лампы 100 - 200 Вт и избегать перегрева с помощью вентилятора. Через 1 - 1,5 ч из листьев каждого варианта вырежьте три кусочка ткани одинаковой формы (круг, квадрат), обработайте так же, как и при проверке на полноту обескрахмаливания. В зависимости от условий опыта в листьях будет накапливаться различное количество крахмала, которое можно определить по степени его посинения. Так как накопление крахмала в отдельных участках листа может варьировать, из него берут не менее трех кусочков для анализа его содержания. Для оценки результатов пользуются усредненными значениями из трех повторностей.

Степень посинения листа оценивается в баллах:

темно-синий - 3;

средне-синий - 2;

слабо-синий - 1;

окраски нет - 0.

3.2. Зависимость фотосинтеза от интенсивности освещения.

Цель . Определить зависимости фотосинтеза от интенсивности освещения.

Методика опыта.

Листья пеларгонии, подготовленные к опыту, поместите: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет. Через указанное время определите в листьях наличие крахмала.

Сделайте вывод о влиянии интенсивности освещения на скорость фотосинтеза.

Ход работы.

Обильно полили герань, поставили в теплое темное место (в шкаф).

Через 3 суток проверили обескрахмаливание листьев. Для этого вырезали из затемненного листа кусочки, поместили в пробирку с водой (2 - 3 мл) и прокипятили 3 мин, чтобы убить клетки и увеличить проницаемость цитоплазмы. Затем слили воду и прокипятили на водяной бане несколько раз в этиловом спирте (по 2 - 3 мл), каждые 1-2 мин меняя раствор, пока кусочек ткани листа не обесцветился. Слили последнюю порцию спирта, добавили немного воды для размягчения тканей листа (в спирте они становятся хрупкими), поместили кусочек ткани в чашку Петри и обработали раствором иода.

Наблюдаем полное обескрахмаливание - синее окрашивание отсутствует.

Лишенные крахмала листья срезали с растения, обновили срез под водой и опустили черешок в пробирку с водой. Листья герани, подготовленные к опыту, поместили: один в полную темноту; второй - на рассеянный дневной свет; третий - на яркий свет.

Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа в темноте – 0 баллов, на рассеянном свету – 1 балл, на ярком свете – 3 балла.

Вывод. При увеличении интенсивности освещения скорость фотосинтеза увеличилась.

3.3. Зависимость интенсивности фотосинтеза от температуры.

Цель . Определить зависимость фотосинтеза от температуры.

Методика опыта.

Подготовленные листья пеларгонии поставьте на равном расстоянии от мощного источника света: один на холод (между рамами окна), другой - при комнатной температуре. Через указанное время определите наличие крахмала.

Сделайте вывод о влиянии температуры на интенсивность фотосинтеза.

Ход работы.

Лишенные крахмала листья поставили на равном расстоянии от лампы: один на холод (между рамами окна), другой - при комнатной температуре. Через 1 ч из листьев каждого варианта вырезали три кусочка ткани одинаковой формы, обработали так же, как и при проверке на полноту обескрахмаливания.

Результат.

Степень посинения листа на холоде – 1 балл, при комнатной температуре – 3 балла.

Вывод. При увеличении температуры скорость фотосинтеза увеличилась.

3.4. Зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере.

Цель. Определить зависимость интенсивности фотосинтеза от концентрации углекислого газа в атмосфере

Методика опыта.

Листья пеларгонии, подготовленные к работе, поставьте в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместите маленькую чашечку с 1-2 г соды, в которую добавьте 3 - 5 мл 10%-ной серной или соляной кислоты. Замажьте стык между стеклом и колпаком пластилином. Другой лист оставьте в классе. При этом освещенность и температура обоих листьев должны быть одинаковы. Через указанное время проведите учет накопленного в листьях крахмала, сделайте вывод о влиянии концентрации СОг на интенсивность фотосинтеза.

Ход работы.

Листья герани, подготовленные к работе, поставили в сосуд с водой, а сосуд - на кусок стекла под стеклянным колпаком. Туда же поместили маленькую чашечку с 2 г соды, в которую добавьте 5 мл 10%-ной соляной кислоты. Замазали стык между стеклом и колпаком пластилином. Другой лист оставили в классе. При этом освещенность и температура обоих листьев одинаковы.

Результат.

Степень посинения листа в классе – 2 балл, под колпаком – 3 балла.

Вывод. При увеличении концентрации углекислого газа в атмосферы скорость фотосинтеза увеличилась.

Заключение

Проделав практическую часть исследовательской работы, мы пришли к выводу, что наша гипотеза подтвердилась. Действительно, интенсивность фотосинтеза зависит от температуры, освещенности, содержания углекислого газа в атмосфере.

Источники информации.

1. Лемеза Н.А., Лисов Н.Д. Клетка – основа жизни. Учеб. Пособие. – Мн.: НКФ «Экоперспектива», 1997.

2. Никишов А.И. Биология. Конспективный курс. Учеб.пособие. – М.: ТЦ «Сфера», 1999.

3.Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф,2008.

4. Пономарева И.Н. Экология. – М.: Вентана-Граф,2006.

5. Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988

Пономарева И.Н., Корнилова О.А., Кумченко В.С. Биология: 6 класс: Учебник для учащихся общеобразовательных учреждений /Под ред. проф. И.Н.Пономаревой. – М.: Вентана-граф, 2008.

Чернова Н.М., Былова А.М. Экология: Учеб.пособие для студентов биол. спец. пед. ин-тов. – М.: Просвещение, 1988

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.

1. При низкой освещенности скорость фотосинтеза прямопропорциональна интенсивности света. Свет – лимитирующий фактор при низкой освещенности. При большой интенсивности света происходит обесцвечивание хлорофилла и фотосинтез замедляется. В таких условиях в природе растения обычно защищены (толстая кутикула, опушенные листья, чешуйки).

  1. Для темновых реакций фотосинтеза необходим углекислый газ , который включается в органические вещества, в полевых условиях является лимитирующим фактором. Концентрация СО 2 варьирует в атмосфере в пределах от 0,03–0,04%, но если повысить ее, то можно увеличить скорость фотосинтеза. Некоторые тепличные культуры сейчас выращиваются при повышенном содержании СО 2 .
  2. Температурный фактор . Темновые и некоторые световые реакции фотосинтеза контролируются ферментами, а их действие зависит от температуры. Оптимальная температура для растений умеренного пояса составляет 25 °С. При каждом повышении температуры на 10 °С (вплоть до 35 °С) скорость реакций удваивается, но из-за влияния ряда иных факторов растения лучше растут при 25 °С.
  3. Вода – исходное вещество для фотосинтеза. Недостаток воды влияет на многие процессы в клетках. Но даже временное увядание приводит к серьезным потерям урожая. Причины: при увядании устьица растений закрываются, а это мешает свободному доступу СО 2 для фотосинтеза; при нехватке воды в листьях некоторых растений накапливается абсцизовая кислота . Это гормон растений – ингибитор роста. В лабораторных условиях ее используют для изучения торможения ростового процесса.
  4. Концентрация хлорофилла . Количество хлорофилла может уменьшаться при заболеваниях мучнистой росой, ржавчиной, вирусными болезнями, недостатком минеральных веществ и возрастом (при нормальном старении). При пожелтении листьев наблюдаются хлоротичные явления или хлороз . Причиной может быть недостаток минеральных веществ. Для синтеза хлорофилла нужны Fe, Mg, N и К.
  5. Кислород . Высокая концентрация кислорода в атмосфере (21%) ингибирует фотосинтез. Кислород конкурирует с углекислым газом за активный центр фермента, участвующего в фиксации СО 2 , что снижает скорость фотосинтеза.
  6. Специфические ингибиторы . Лучший способ погубить растение – это подавить фотосинтез. Для этого ученые разработали ингибиторы – гербициды – диоксины. Например:ДХММ – дихлорфенилдиметилмочевина – подавляет световые реакции фотосинтеза. Успешно используют для изучения световых реакций фотосинтеза.
  7. Загрязнение окружающей среды . Газы промышленного происхождения, озон и сернистый газ, даже в малых концентрациях сильно повреждают листья у ряда растений. К сернистому газу очень чувствительны лишайники. Поэтому существует метод лихеноиндикации – определение загрязнения окружающей среды по лишайникам. Сажа забивает устьица и уменьшает прозрачность листовой эпидермы, что снижает скорость фотосинтеза.

6. Факторы жизни растений, тепло, свет, воздух, вода - Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры. Вот почему глубокое знание этих требований дает возможность правильно устанавливать структуру посевных площадей, чередование культур, размещение севооборотов .
Для нормальной жизнедеятельности растениям необходимы свет, тепло, вода, питательные вещества, включая углекислоту и воздух.
Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др.
Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений.
Тепло в жизни растений , наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования.
Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы.
Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений.



7 . Показатели фотосинтетической продуктивности посева

Урожай создается в процессе фотосинтеза, когда в зеленых рас­ тениях образуется органическое вещество из диоксида углерода, воды и минеральных веществ. Энергия солнечного луча переходит в энергию растительной биомассы. Эффективность этого процес­ са и в конечном счете урожай зависят от функционирования посе­ ва как фотосинтезирующей системы. В полевых условиях посев (ценоз) как совокупность растений на единице площади представляет собой сложную динамическую саморегулирующуюся фотосинтезирующую систему. Эта система включает в себя много компонентов, которые можно рассматри­ вать как подсистемы; она динамическая, так как постоянно меняет свои параметры во времени; саморегулирующаяся, так как, не­ смотря на разнообразные воздействия, посев изменяет свои пара­ метры определенным образом, поддерживая гомеостаз.

Показатели фотосинтетической деятельности посевов. Посев представляет собой оптическую систему, в которой листья погло­ щают ФАР. В начальный период развития растений ассимиляци­ онная поверхность невелика и значительная часть ФАР проходит мимо листьев, не улавливается ими. С повышением площади лис­ тьев увеличивается и поглощение ими энергии солнца. Когда ин­ декс листовой поверхности* составляет 4...5, т. е. площадь листьев в посеве 40...50 тыс. м 2 /га, поглощение ФАР листьями посева до­ стигает максимального значения - 75...80 % видимой, 40 % общей радиации. При дальнейшем увеличении площади листьев погло­ щение ФАР не повышается. В посевах, где ход формирования площади листьев оптималь­ ный, поглощение ФАР может составить в среднем за вегетацию 50...60 % падающей радиации. Поглощенная растительным по­ кровом ФАР - энергетическая основа для фотосинтеза. Однако в урожае аккумулируется только часть этой энергии. Коэффици­ ент использования ФАР обычно определяют по отношению к па­ дающей на растительный покров ФАР. Если в урожае биомассы в средней полосе России аккумулировано 2...3 % прихода на посев ФАР, то сухая масса всех органов растений составит 10... 15 т/га, а возможная урожайность - 4...6 т зерна с 1 га. В изреженных по­ севах коэффициент использования ФАР составляет всего 0,5...1,0%.

При рассмотрении посева как фотосинтезирующей системы урожай сухой биомассы, создаваемый за вегетационный период, или его прирост за определенный период зависит от величины средней площади листьев, продолжительности периода и чистой продуктивности фотосинтеза за этот период.

У = ФП ЧПФ,

где У -урожайность сухой биомассы, т/га;

ФП- фотосинтетический потенциал, тыс. м 2 - дни/га;

ЧПФ -чистая продуктивность фотосинтеза, г/(м2 - дни).

Фотосинтетический потенциал рассчитывают по формуле

где Sc - средняя за период площадь листьев, тыс. м 2 /га;

Т - продолжительность периода, дни.

Основные показатели для ценоза, как и урожайность, опреде­ ляют в расчете на единицу площади -1м 2 или 1 га. Так, площадь листьев измеряют в тыс. м 2 /га. Кроме того, пользуются таким по­ казателем, как индекс листовой поверхности. Основную часть ассимиляционной поверхности составляют листья, именно в них осуществляется фотосинтез. Фотосинтез мо­ жет происходить и в других зеленых частях растений - стеблях, остях, зеленых плодах и т. п., однако вклад этих органов в общий фотосинтез обычно небольшой. Принято сравнивать посевы меж­ ду собой, а также различные состояния одного посева в динамике по площади листьев, отождествляя ее с понятием «ассимиляцион­ ная поверхность». Динамика площади листьев в посеве подчиняется определен­ ной закономерности. После появления всходов площадь листьев медленно повышается, затем темпы нарастания увеличиваются. К моменту прекращения образования боковых побегов и роста ра­ стений в высоту площадь листьев достигает максимальной за веге­ тацию величины, затем начинает постепенно снижаться в связи с пожелтением и отмиранием нижних листьев. К концу вегетации в посевах многих культур (зерновые, зерновые бобовые) зеленые листья на растениях отсутствуют. Площадь листьев различных сельскохозяйственных растений может сильно варьировать в течение вегетации в зависимости от условий водоснабжения, питания, агротехнических приемов. Максимальная площадь листьев в засушливых условиях достигает всего 5... 10 тыс. м 2 /га, а при избыточных увлажнении и азотном питании она может превышать 70 тыс. м 2 /га. Считается, что при индексе листовой поверхности 4...5 посев как оптическая фото- синтезирующая система работает в оптимальном режиме, поглощая наибольшее количество ФАР. При меньшей площа­ ди листьев часть ФАР лис­ тья не улавливают. Если площадь листьев больше 50 тыс. м 2 /га, то верхние ли­ стья затеняют нижние, их доля в фотосинтезе резко снижается. Более того, вер­ хние листья «кормят» ниж­ ние, что невыгодно для формирования плодов, се­ мян, клубней и т. д. Динамика площади лис­ тьев показывает, что на разных этапах вегетации посев как фотосинтезиру- ющая система функциони­ рует неодинаково (рис. 3). Первые 20...30 дней вегетации, когда средняя площадь листьев составляет 3...7 тыс. м 2 /га, большая часть ФАР не улавливается листьями, и поэтому коэффициент использования ФАР не может быть высоким. Далее площадь ли­ стьев начинает быстро нарастать, достигая максимума. Как пра­ вило, это происходит у мятликовых в фазе молочного состояния зерна, у зерновых бобовых в фазе полного налива семян в сред­ нем ярусе, у многолетних трав в фазе цветения. Затем площадь листьев начинает быстро снижаться. В это время преобладают перераспределение и отток веществ из вегетативных органов в генеративные. На продолжительность этих периодов и их соотношение влияют различные факторы, в том числе агротехнические. С их помощью можно регулировать процесс нарастания площади листьев и продол­ жительность периодов. В засушливых условиях густоту растений, а следовательно, и площадь листьев намеренно снижают, так как при большой площади листьев усиливается транспирация, растения сильнее страдают от недостатка влаги, урожайность уменьшается.

Чтобы ответить на вопрос, как влияют внешние факторы на , необходимо знать, что к числу внешних факторов, относятся: свет, температура, концентрация углекислого газа в воздухе и водоснабжение растения . Влияние внешних факторов на процесс фотосинтеза в растениях.

Свет

Интенсивность света оказывает большое влияние на процесс фотосинтеза. С повышением интенсивности света ускоряется и фотосинтез, но прямой пропорциональной зависимости между интенсивностью света и фотосинтезом не наблюдается. Зависимость фотосинтеза от количества света будет у разных растений неодинакова.
Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений. По отношению к интенсивности света растения разделяют на 2 группы: . Первые хорошо растут на открытых местах, при ярком свете, вторые - в тени. Эти растения отличаются и по интенсивности фотосинтеза: у светолюбивых растений фотосинтез возрастает при увеличении освещения, у теневыносливых остается на одном уровне. У теневыносливых растений максимальный фотосинтез протекает при меньшей освещенности по сравнению со светолюбивыми. Светолюбивые и теневыносливые растения различаются как по анатомическому строению, так и по физиологическим признакам. Листья светолюбивых растений имеют более толстую листовую пластинку, хорошо развитый мезофилл, несколько слоев столбчатой паренхимы, более толстый слой кутикулы, больше устьиц и большее количество проводящих пучков, подробнее: (). Клетки у них мелкие, хлоропласты тоже. Кроме того, они содержат меньше хлорофилла, чем теневыносливые растения.

У теневыносливых растений листовая пластинка тонкая, один слой столбчатой паренхимы, сеть жилок слабо развита, устьиц немного. Клетки этих растений крупные, хлоропласты тоже. Данные по количеству хлорофилла у светолюбивых и теневыносливых растений приведены в таблице.

Из данных таблицы видно, что у ели - теневыносливого растения- на свету содержание хлорофилла в 2 раза выше, чем у светолюбивой лиственницы. При недостатке света разница в содержании хлорофилла у ели и лиственницы возрастает в 21 раз. Все особенности в строении листьев у светолюбивых растении имеют приспособительный характер. Так, большое количество устьиц, хорошая проводящая система и повышенная транспирация не позволяют листьям перегреваться на ярком свету и способствуют быстрой подаче к ним воды. Особенности строения листьев у теневыносливых растений вполне обеспечивают их нормальный рост при относительно слабом освещении. Большое количество хлорофилла дает возможность теневыносливым растениям осуществлять процесс фотосинтеза при малой интенсивности света. Если же теневыносливые растения перенести на яркий свет, то они быстро погибают, так как высокое содержание хлорофилла приводит к большому поглощению света, в результате чего резко возрастает транспирация, однако из-за слабо развитой проводящей системы вода в листья поступает медленно. Светолюбивые и теневыносливые растения отличаются и по положению компенсационной точки, т. е. той интенсивности света, при которой образование органического вещества при фотосинтезе равно его трате на дыхание. Теневыносливые растения характеризуются низкой интенсивностью дыхания и повышенной интенсивностью фотосинтеза при слабой освещенности, поэтому точка компенсации у них расположена ниже. Накопление органического вещества у этих растений идет при низкой интенсивности света, при которой у светолюбивых растений вследствие интенсивного дыхания еще не наступила точка компенсации. Светолюбие и тенелюбие растений изменяется в зависимости от места произрастания растений. Изменение светолюбия растений в связи с географической широтой зависит не только от света, но и от температуры и водоснабжения. Листья растения хорошо приспосабливаются к условиям освещения. Так, в кроне дерева всегда есть листья светового типа, расположенные на периферии, и листья теневого типа, находящиеся на ее затененной стороне. Растения можно выращивать при искусственном освещении, используя электрический свет. Однако в этом случае они приобретают признаки этиоляции: электрический свет имеет недостаточное количество сине-фиолетовых лучей, влияющих на формообразовательные процессы.
Искусственное освещение. В последнее время предложены различные лампы, которые дают свет, содержащий необходимое количество синих и фиолетовых лучей. Для нормального роста светолюбивых растений достаточно освещенности в 10- 15 тыс. люксов, которой можно достигнуть и при искусственном освещении.

Температура

Температура оказывает большое влияние на процесс фотосинтеза. При повышении температуры на 10° интенсивность фотосинтеза примерно удваивается. Усиление фотосинтеза, однако, происходит только до температуры 30-35°, дальнейшее повышение ее приводит к уменьшению фотосинтеза, и при 40-45° он прекращается.
Зависимость фотосинтеза от температуры. У многих растений наиболее интенсивный фотосинтез наблюдается при 20-25° (рис. 31). По представлению Ф. Блэкмана, форма кривой изменения интенсивности фотосинтеза с повышением температуры обусловлена тем, что наряду с прогрессивным ускорением химических реакций при повышении температуры возникают процессы, угнетающие фотосинтез (инактивация хлоропластов). К числу внешних факторов, влияющих на интенсивность фотосинтеза, относится и содержание углекислого газа в атмосфере. В среднем в атмосфере содержится 0,03% углекислого газа по объему, и содержание его в атмосфере почти не изменяется: дефицит быстро выравнивается поступлением СО 2 из почвы в результате жизнедеятельности микроорганизмов. При увеличении количества углекислого газа в атмосфере фотосинтез возрастает, но прямой пропорциональности между содержанием углекислого газа и фотосинтезом не наблюдается. Фотосинтез устойчиво увеличивается при повышении содержания углекислого газа до 0,06%, а при значительной интенсивности света и при 1,5-2,0%. В производственных условиях в теплицах и оранжереях в утренние часы, когда фотосинтез идет интенсивно, содержание углекислого газа быстро падает ниже нормы (0,03%) и растения голодают. Поэтому в условиях закрытого грунта уже вошло в практику повышать содержание углекислоты до 1-2%. Однако повышение концентрации углекислого газа неэффективно при слабой интенсивности света, так как углекислый газ не успевает перерабатываться в листьях в органические соединения и действует токсически. При повышении интенсивности света с одновременным увеличением количества углекислого газа возрастает и интенсивность фотосинтеза. Громадное значение для протекания и интенсивности фотосинтеза имеет содержание воды в растении и условия его водоснабжения, поскольку из воды и углекислого газа синтезируются органические вещества и коллоиды цитоплазмы должны быть насыщены водой. При недостатке воды закрываются устьица, в результате замедляется процесс проникновения углекислого газа в лист, а это, в свою очередь, приводит к уменьшению фотосинтеза.
Значение воды для фотосинтеза. При недостаточном водоснабжении подсыхают оболочки клеток мезофилла, граничащие с межклеточниками, что задерживает передвижение углекислого газа к хлоропластам. Вода необходима также и для нормальной работы ферментов, участвующих в процессе фотосинтеза, а в дальнейшем для переработки его продуктов. Временное подвядание растений неблагоприятно влияет на интенсивность фотосинтеза; при этом оно сказывается тем дольше и сильнее, чем длительнее было обезвоживание. При недостатке воды задерживается отток образовавшихся продуктов из листа в стебель и корень растения, что тоже тормозит процесс фотосинтеза, от температуры. Избыточное увлажнение, в результате которого могут закрываться устьица, также отрицательно сказывается на интенсивности фотосинтеза: углекислый газ не может проникнуть внутрь листа.

Агротехнические приемы

Для усиления процесса фотосинтеза, а следовательно, получения высоких урожаев разработаны агротехнические приемы . Большое значение имеют густота стояния растений и направление рядков. При сильно загущенных посевах снижается освещенность отдельных растений, что может привести к уменьшению фотосинтеза. Для светолюбивых растений необходимо применять широкорядные посевы, обеспечивающие хорошую освещенность растений. В этом случае усиление процесса фотосинтеза связано не только с лучшей освещенностью растений, но и с большей площадью их питания.
Ряды посевов. В целях лучшего использования света растениями важное значение имеет и направление рядков. В условиях северо-западной зоны лучше располагать рядки с севера на юг, а на юге - с запада на восток. Для получения высоких урожаев растения нужно обеспечить и углекислым газом. Внесением в почву навоза, торфа и других органических веществ обогащают надземный слой воздуха углекислым газом, который выделяется из почвы при разложении микроорганизмами органических веществ. Почвы, богатые перегноем, ежедневно выделяют до 100-250 кг СО 2 на 1 га. Кроме того, внесение органических удобрений улучшает структуру почвы. В районах с развитой промышленностью углекислый газ, являющийся отходом производства, может быть также использован для обогащения воздуха над посевами. В этом случае его подают на близлежащие поля по трубам. Дополнительное питание растений углекислым газом особенно необходимо при выращивании растений в условиях закрытого грунта - в теплицах и оранжереях, где часто в полуденные часы СО 2 почти отсутствует.
При выращивание в теплицах и оранжереях необходимо дополнительное питание растений углекислым газом. В этом случае обогащение воздуха СО 2 увеличивает урожай в 2-2,5 раза. При выращивании растений в условиях закрытого грунта приходится прибегать к дополнительному освещению, особенно в пасмурные дни и в зимнее время. Свет мощных ламп накаливания может вызвать перегрев растений, поэтому между источником света и растениями ставят водные экраны для поглощения избытка тепловых - инфракрасных - лучей. Поэтому для выращивания растений стали применять люминесцентные лампы - лампы холодного света. При полном отсутствии солнечного света интенсивность освещения должна быть 50-100 тыс. эрг на 1 кв. см в 1 секунду. Для досвечивания достаточно 50 эрг на 1 кв. см в 1 секунду. Выращивание растений на искусственном освещении называется светокультурой. Для нормального роста растений в условиях светокультуры необходимо, кроме света, обеспечить их углекислым газом, минеральным питанием и правильно снабжать водой. Светокультуры имеют большое значение для ранней выгонки зеленных культур, выращивания рассады, томатов, огурцов, редиса, а также для быстрого получения сеянцев древесных пород декоративного садоводства. Используя светокультуры можно снабжать население свежими овощами в течение круглого года.

Статьи по теме: