Общие сведения о взрывчатых веществах, их классификация и краткая. Взрывоопасные вещества: классификация, примеры, применение и хранение

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

    • Введение
    • Краткие сведения о взрывчатых веществах
    • Причины взрывов
    • Основные поражающие факторы и зоны действия взрыва
    • Действия взрыва
    • Техника предотвращения взрывов
    • Заключение
    • Литература

Введение

В большинстве случаев техногенные аварии связанны с неконтролируемым, самопроизвольным выходом в окружающее пространство вещества и/или энергии. Самопроизвольное высвобождение энергии приводит к промышленным взрывам, а вещества - к взрывам, пожарам и химическому загрязнению окружающей среды. Расширение разогретых пламенем газов и ускорение их движения способствуют формированию скорости распространения пламени до нескольких сот метров в секунду, что при возрастании турбулентности воздушных масс вызывает взрывы.

Взрыв - это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения. Газообразные продукты взрыва, соприкасаясь с воздухом, нередко воспламеняются, что может вызывать пожар.

Механическая работа, совершаемая при взрыве, обусловлена быстрым расширением газов или паров. В основании взрывного процесса могут лежать как физические так и химические превращения.

При химических взрывах вещества могут быть твёрдыми, жидкими, газообразными, а также аэровзвесями горючих веществ (жидких и твёрдых) в окислительной среде (чаще в воздухе).

Физический взрыв чаще всего связан с неконтролируемым высвобождением потенциальной энергии сжатых газов из замкнутых объёмов машин и аппаратов, сила взрыва сжатого или сжиженного газа зависит от внутреннего давления этого резервуара.

В производственных условиях возможны следующие основные виды взрывов: свободный воздушный, наземный, взрыв в непосредственной близости от объекта, а также взрыв внутри объекта (производственного сооружения).

Краткие сведения о взрывчатых веществах

Взрывчатыми веществами (ВВ) называются неустойчивые химические соединения или смеси, чрезвычайно быстро переходящие под воздействием определенного импульса в другие устойчивые вещества с выделением значительного количества тепла и большого объема газообразных продуктов, которые находятся под очень большим давлением и, расширяясь, выполняют ту или иную механическую работу. Первым взрывчатым веществом был дымный (черный) порох, появившийся в Европе в XIII веке. В течение 600 лет дымный порох был единственным ВВ. В XIX веке с развитием химии были получены другие ВВ, называемые в настоящее время бризантными. Они были безопасными при обращении с ними, обладали большой мощностью и стойкостью при хранении.

Во второй половине XIX века были получены пикриновая кислота, тротил, аммиачно-селитренные вещества, а в XX веке более мощные ВВ, такие, как гексоген, тэн, азид свинца.

Современные ВВ представляют собой или химические соединения (гексоген, тротил и др.), или механические смеси (аммиачно-селитренные и нитроглицериновые).

Современные взрывчатые вещества могут пребывать в газообразном, жидком, пластичном и твердом состоянии.

Газопаровоздушные (ГПВС) и пылевоздушные смеси образуют класс объемных взрывов.

Взрывы ГПВС могут происходить в:

· помещениях вследствие утечки газов из бытовых приборов;

· емкостях их хранения и транспортировки (спецрезервуарах, газгольдерах, цистернах, танках - грузовых отсеках танкеров);

· глубинных штреках горных выработок;

· природной среде вследствие повреждений трубопроводов, труб буровых скважин, при интенсивных утечках сжиженных и горючих газов.

Взрывы пыли (пылевоздушных смесей - аэрозолей) представляют одну из основных опасностей химических производств и происходят в ограниченных пространствах (в помещениях зданий, внутри различного оборудования, штольнях шахт). Возможны взрывы пыли в мукомольном производстве, на зерновых элеваторах (мучная пыль) при ее взаимодействии с красителями, серой, сахаром с другими порошкообразными пищевыми продуктами, а также при производстве пластмасс, лекарственных препаратов, на установках дробления топлива (угольной пыли), в текстильном производстве.

Сжиженные углеводородные газы, аммиак, хлор, фреоны хранятся в технологических емкостях под сверхатмосферным давлением при температуре выше или равной температуре окружающей среды, и по этим причинам они являются взрывоопасными жидкостями.

В теплоизолированных сосудах и резервуарах при отрицательных температурах хранятся сжиженные газы метан, азот, кислород, которые называют криогенными веществами.

Вещества другой характерной группы пропан, бутан, аммиак, хлор хранят в жидком состоянии под давлением в однослойных сосудах и резервуарах при температуре окружающей среды.

В соответствии с нормативами ГОСТа разработана классификация, объединяющая вещества в четыре основные категории.

К первой категории отнесены вещества с критической температурой ниже температуры среды (криогенные вещества - сжиженный природный газ, содержащий в основном метан, азот, кислород).

Во вторую категорию входят вещества с критической температурой выше, а точкой кипения ниже, чем в окружающей среде (сжиженный нефтяной газ, пропан, бутан, аммиак, хлор). Их особенностью является "мгновенное" (очень быстрое) испарение части жидкости при разгерметизации и охлаждение оставшейся доли до точки кипения при атмосферном давлении,

Третью категорию составляют жидкости, у которых критическое давление выше атмосферного и точка кипения выше температуры окружающей среды (вещества, находящиеся в обычных условиях в жидком состоянии). К этой группе относятся некоторые вещества из предыдущей категории, например, бутан в холодную погоду и этиленоксид при теплых природных условиях.

Четвертую категорию - вещества, содержащиеся при повышенных температурах (водяной пар в котлах, циклогексан и другие жидкости под давлением и при температуре, превышающей точку кипения при атмосферном давлении).

Классификация твердых взрывчатых веществ

Инициирующие ВВ обладают наибольшей чувствительностью к внешним воздействиям. Развитие процесса детонации в них происходит за очень малый промежуток времени, почти мгновенно, и поэтому они способны детонировать в очень малых количествах от таких простых начальных импульсов, как искра и луч пламени, возбуждая взрывчатое превращение в других менее чувствительных веществах.

Весьма большая чувствительность и слабые взрывчатые характеристики не позволяют использовать их в качестве основных ВВ для получения от них механической работы.

Бризантные ВВ получили свое название от французского слова "briser", что значит дробить, разламывать.

Они не детонируют от таких простых начальных импульсов, как искра и луч пламени. Для возбуждения в них детонации необходим начальный импульс в виде взрыва небольшого количества инициирующего ВВ.

Бризантные ВВ являются основными веществами, применяемыми для снаряжения боеприпасов (снарядов, мин, бомб) и производства взрывных работ как для военных, так и для народнохозяйственных целей.

Метательные ВВ характеризуются тем, что их дробящее действие проявляется в незначительной степени по сравнению с действием в виде отбрасывания и разбрасывания окружающей среды. Они легко воспламеняются от удара, трения, искры, прострела пулей.

Основные свойства взрывчатых веществ

Основные свойства ВВ определяются взрывчатыми и физико-химическими характеристиками.

Взрывчатыми характеристиками являются :

· теплота взрыва и температура продуктов взрыва;

· скорость детонации;

· бризантность (способность дробить прилегающую к нему среду);

· работоспособность (фугасность).

Теплота взрыва и температура продуктов взрыва

Из физики известно, что энергия и тепло, выделяемые в процессе реакции, находятся в прямой зависимости между собой, поэтому количество энергии, выделяемое при взрыве, и теплота являются важной энергетической характеристикой ВВ, определяющей его работоспособность. Чем больше выделено теплоты, тем выше температура нагрева продуктов взрыва, тем больше давление, а следовательно, и воздействие продуктов взрыва на окружающую среду.

От скорости детонации ВВ зависит скорость взрывчатого превращения, а следовательно, и время, в течение которого выделяется вся энергия, заключенная в ВВ. А это вместе с количеством тепла, выделяющегося при взрыве, характеризует мощность, развиваемую взрывом, следовательно, дает возможность правильно выбрать ВВ для выполнения работы. Для перебивания металла целесообразнее получить максимум энергии в короткий промежуток времени, а для выброса грунта эту же энергию лучше получить за более длительный отрезок времени подобно тому, как при нанесении резкого удара по доске можно ее перебить, а приложив эту же энергию постепенно, только сдвинуть.

Бризантность ВВ характеризуется мгновенным скачком давления до весьма высоких величин и быстрым его падением до атмосферного и ниже.

Работоспособность ВВ (фугасность) проявляется в форме выброса грунта из воронок и выемок, образованием полостей в грунтах и скальных породах и рыхлением их.

Физико-химическими характеристиками являются:

· чувствительность к механическим и тепловым воздействиям;

· физическая и химическая стойкость;

· плотность.

Чувствительность взрывчатых веществ является одной из важнейших характеристик ВВ. Она определяет область и возможность практического использования данного вещества.

Слишком большая чувствительность делает ВВ опасным и не удобным в обращении. Например, йодистый азот взрывается от прикосновения к нему. Существенно влияют на чувствительность к механическому внешнему импульсу различные примеси.

Физическая и химическая стойкость

Стойкостью называется способность ВВ сохранять в нормальных условиях хранения и применения постоянство своих физико-химических и взрывчатых характеристик. Нестойкие ВВ могут в определенных условиях снижать и даже полностью утрачивать способность к взрыву или же, наоборот, настолько повышать свою чувствительность, что становятся опасными в обращении и подлежат уничтожению. Они способны к саморазложению, а при известных условиях и к самовозгоранию, что при больших количествах этих веществ может привести к взрыву. Следует различать физическую и химическую стойкость ВВ.

Физическая стойкость рассматривает такие свойства ВВ, как гигроскопичность, растворимость, старение, затвердевание, слеживаемость.

Химическая стойкость ВВ определяется подогреванием небольшого количества вещества в течение определенного времени с одновременным контролем за скоростью разложения.

Под плотностью понимается вес вещества в единице объема. От плотности зависит чувствительность ВВ к начальному импульсу, скорость детонации и бризантность.

Причины взрывов

взрыв поражающий население опасность

На взрывоопасных предприятиях чаще всего к причинам взрывов относят: разрушения и повреждения производственных емкостей, аппаратуры и трубопроводов; отступление от установленного технологического режима (превышение давления и температуры внутри производственной аппаратуры и др.); отсутствие постоянного контроля за исправностью производственной аппаратуры и оборудования и своевременностью проведения плановых ремонтных работ.

Большую опасность для жизни и здоровья людей представляют взрывы в жилых и общественных зданиях, также в общественных местах. Главная причина таких взрывов - неразумное поведение граждан, прежде всего детей и подростков. Наиболее частое явление - взрыв газа. Однако в последнее время получи распространение случаи, связанные с применением взрывчатых веществ, и прежде всего - террористические акты.

Для нагнетания страха террористы могут организовать взрыв, установив взрывные устройства в самых неожиданных местах (подвалах, арендуемых помещениях, снимаемых квартирах, припаркованных автомобилях, туннелях, метро, в городском транспорте и т.п.) и использовав как промышленные, так и самодельные взрывные устройства. Опасен не только сам взрыв, но и его последствия, выражающиеся, как правило, в обрушении конструкций и зданий.

Об опасности взрыва можно судить по следующим признакам: наличие неизвестного свертка или какой-либо детали в машине, на лестнице, в квартире и т.д.; натянутая проволока, шнур; провода или изолирующая лента, свисающие из-под машины; чужая сумка, портфель, коробка, какой-либо предмет, обнаруженный в машине, у дверей квартиры, в метро. Поэтому, заметив взрывоопасный предмет (самодельное взрывное устройство, гранату, снаряд, бомбу и т.п.), не подходите к нему близко, немедленно сообщите о находке в милицию, не позволяйте случайным людям прикасаться к опасному предмету и обезвреживать его.

Причинами взрыва на улице может быть столкновение транспортных средств, когда сначала происходит пожар, а потом взрыв бензобаков. Причиной взрыва на транспорте и метро могут быть: взрыв взрывных устройств в ходе или при подготовке террористических актов.

Признаки, свидетельствующие об опасности взрыва

На опасность взрыва в доме может указывать запах газа и возникшее задымление. Около квартиры - следы ремонтных работ, участки стены с нарушенной окраской, отличающейся от общего фона.

В транспорте и метро признаками, свидетельствующими об опасности взрыва, могут быть косвенные признаки использования самодельных или промышленных взрывных устройств, нетипичных для данного места: неизвестный сверток, остатки различных материалов (проводов, изоляционной ленты). В общественных местах и транспорте должны обращать на себя внимание оставленные сумка, портфель, коробка.

Иногда террористы используют почтовый канал. Для писем с пластиковой миной характерна небольшая толщина (не более 3 мм), упругость, схожая с резиной, вес не менее 50 г и тщательная упаковка. На конверте могут быть пятна, проколы, возможен специфический запах.

Основные поражающие факторы и зоны действия взрыва

Пожаро-взрывные явления характеризуются следующими факторами:

· воздушной ударной волной, возникающей при разного рода взрывах газо-воздушных смесей, резервуаров с перегретой жидкостью и резервуаров под давлением;

· тепловым излучением и разлетающимися осколками;

· действием токсичных веществ, которые применялись в технологическом процессе или образовались в ходе пожара или других аварийных ситуациях.

Действие воздушной ударной волны может вызывать вторичные последствия, так как при взрыве взрывчатого вещества в атмосфере возникают ударные волны, распространяющиеся с большой скоростью в виде областей сжатия. Ударная волна достигает земной поверхности и отражается от нее на некотором расстоянии от эпицентра взрыва, фронт отраженной волны сливается с фронтом падающей волны, вследствие чего образуется так называемая головная волна с вертикальным фронтом.

При наземном взрыве воздушная ударная волна, как и при воздушном взрыве, распространяется от эпицентра с вертикальным фронтом.

При подземном взрыве воздушная ударная волна ослабляется грунтовой средой. При взрывах на малых глубинах имеет место только волна от выхода газов. А на больших глубинах при наличии камуфлетов (разрывов без образования воронки) проявляется только "наведенная" волна.

Основными параметрами, определяющими интенсивность ударной волны, являются: избыточное давление во фронте и длительность фазы сжатия. Эти параметры зависят от массы заряда ВВ определенного типа (т.е. энергии взрыва), высоты, условий взрыва и расстояния от эпицентра.

Масштабы последствий взрывов зависят от их мощности детонационной и среды, в которой они происходят. Радиусы зон поражения могут доходить до нескольких километров. Различают три зоны действия взрыва.

Зона 1 - действие детонационной волны. Для нее характерно интенсивное дробящее действие, в результате которого конструкции разрушаются на отдельные фрагменты, разлетающиеся с большими скоростями от центра взрыва.

Зона II - действие продуктов взрыва. В ней происходит полное разрушение зданий и сооружений под действием расширяющихся продуктов взрыва. На внешней границе этой зоны образующаяся ударная волна отрывается от продуктов взрыва и движется самостоятельно от центра взрыва. Исчерпав свою энергию, продукты взрыва, расширившись до плотности, соответствующей атмосферному давлению, не производят больше разрушительного действия.

Зона III - действие воздушной ударной волны. Эта зона включает три подзоны: IIIа - сильных разрушений, IIIб - средних разрушений, IIIв - слабых разрушений. На внешней границе зоны III ударная волна вырождается в звуковую, слышимую на значительных расстояниях.

Действие взрыва на здания, сооружения, оборудование

Наибольшим разрушениям продуктами взрыва и ударной волной подвергаются здания и сооружения больших размеров с легкими несущими конструкциями, значительно возвышающиеся над поверхностью земли. Подземные и заглубленные в грунт сооружения с жесткими конструкциями обладают значительной сопротивляемостью разрушению.

Степень разрушения зданий и сооружений можно представить в следующем виде:

· полное - обрушены перекрытия и разрушены все основные несущие конструкции; восстановление невозможно;

· сильное - имеются значительные деформации несущих конструкций; разрушена большая часть перекрытий и стен;

· среднее - разрушены главным образом не несущие, а второстепенные конструкции (легкие стены, перегородки, крыши, окна, двери); возможны трещины в наружных стенах; перекрытия в подвале не разрушены; в коммунальных и энергетических сетях значительные разрушения и деформации элементов, требующие устранения;

· слабое - разрушена часть внутренних перегородок, заполнения дверных и оконных проемов; оборудование имеет значительные деформации; в коммунальных и энергетических сетях разрушения и поломки конструктивных элементов незначительны.

Действие взрыва на человека

Продукты взрыва и образовавшаяся в результате их действия воздушная ударная волна способны наносить человеку различные травмы, в том числе смертельные. При непосредственном воздействии ударной волны основной причиной травм у людей является мгновенное повышение давления воздуха, что воспринимается человеком как резкий удар. При этом возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных перепонок, сотрясение мозга, различные переломы и т.п. Кроме того, скоростной напор воздуха может отбросить человека на значительное расстояние и причинить ему при ударе о землю (или препятствие) повреждения.

Характер и тяжесть поражения людей зависят от величины параметров ударной волны, положения человека в момент взрыва, степени его защищенности. При прочих равных условиях наиболее тяжелые поражения получают люди, находящиеся в момент прихода ударной волны вне укрытий в положении стоя. В этом случае площадь воздействия скоростного напора воздуха будет примерно в 6 раз больше, чем в положении человека лежа.

Поражения, возникающие под действием ударной волны, подразделяются на легкие, средние, тяжелые и крайне тяжелые (смертельные); их характеристики приведены ниже:

· легкое - легкая контузия, временная потеря слуха, ушибы и вывихи конечностей;

· среднее - травмы мозга с потерей сознания, повреждение органов слуха, кровотечение из носа и ушей, сильные переломы и вывихи конечностей;

· тяжелое - сильная контузия всего организма, повреждение внутренних органов и мозга, тяжелые переломы конечностей; возможны смертельные исходы;

· крайне тяжелое - травмы, обычно приводящие к смертельному исходу.

Косвенное воздействие ударной волны заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею. При слабых разрушениях зданий гибель людей маловероятна, однако часть из них может получить различные травмы.

Техника предотвращения взрывов

Для предотвращения взрывоопасных ситуаций принимается комплекс мер, которые зависят от вида выпускаемой продукции. Многие меры являются специфическими и могут быть присущи только одному или нескольким видам производств. Существуют меры, соблюдение которых необходимо для всех видов химического производства или, по крайней мере, для их большинства.

В первую очередь для всех взрывоопасных производств, хранилищ, баз, складов и т.п., имеющих в своем составе взрывчатые вещества, предъявляются требования к территории для их размещения, которые выбираются по возможности в незаселенных или малозаселенных районах. При невозможности выполнения этого условия строительство должно осуществляться на безопасных расстояниях от населенных пунктов, других промышленных предприятий, железных и шоссейных дорог общего пользования, водных путей и иметь свои подъездные пути,

В химической и нефтехимической промышленности применяются автоматические системы защиты, целью которых являются:

· сигнализация и оповещение об аварийных ситуациях производственного процесса;

· вывод из предаварийного состояния потенциально опасных технологических процессов при нарушении регламентных параметров (температуры, давления, состава, скорости); обнаружение загазованности производственных помещений и автоматического включения устройств, предупреждающих об образовании смеси газов и паров с воздухом взрывоопасных концентраций;

· безаварийная установка отдельных агрегатов или всего производства при внезапном прекращении подачи тепла и электроэнергии, инертного газа, сжатого воздуха.

Источниками аварий химических производств могут быть прекращение подачи электроэнергии, снижение подачи пара и воды в магистральных трубопроводах, в результате чего нарушается технологический режим и создаются чрезвычайно опасные аварийные ситуации. В связи с этим принимаются меры по надежному обеспечению тепло-энергоснабжения химических предприятий, совершенствованию технологических средств, обеспечивающих их безопасную остановку и последующий пуск.

Непременным условием надежной безаварийной работы любого производства является высокая профессиональная подготовленность штатного персонала предприятий, баз, складов, а также специальных аварийных бригад, осуществляющих ремонт, надзор и ликвидацию аварий.

Взрыву больших объемов пылевоздушных смесей, как правило, предшествуют небольшие местные хлопки и локальные взрывы внутри оборудования и аппаратуры. При этом возникают слабые ударные волны, встряхивающие и поднимающие в воздух большие массы пыли, накопившиеся на поверхности пола, стен и оборудования.

Чтобы исключить взрыв пылевоздушных смесей, необходимо не допускать значительных скоплений пыли. Это достигается: улучшением технологии производства, повышением надежности оборудования, правильным расчетом и монтажом вентиляционных пылесосных установок.

Инициатором практически всех взрывов газо-, паро- и пылевоздушных смесей является искра, поэтому на всех производствах, где возможно образование этих смесей, необходимо обеспечивать надежную защиту от статического электричества, предусматривать мероприятия против искрения электроприборов и другого оборудования.

Любое оборудование повышенного давления должно быть укомплектовано системами взрывозащиты, которые предполагают:

· применение оборудования, рассчитанного на давление взрыва;

· применение гидрозатворов, огнепреградителей, инертных или паровых завес;

· защиту аппаратов от разрушения при взрыве с помощью устройств аварийного сброса давления (предохранительные мембраны и клапаны, быстродействующие задвижки, обратные клапаны и т.д.).

Взрывозащита систем повышенного давления достигается также организационно-техническими мероприятиями; разработкой инструктивных материалов, регламентов, норм и правил ведения технологических процессов; организацией обучения и инструктажа обслуживающего персонала; контролем и надзором за соблюдением норм технологического режима, правил и норм техники безопасности, промышленной санитарии и пожарной безопасности и т.п.

Действия населения при взрывах

При взрыве на предприятии прежде всего необходимо предупредить рабочих и служащих, а также оповестить проживающее вблизи население.

Необходимо воспользоваться индивидуальными средствами защиты, а при их отсутствии для защиты органов дыхания - использовать ватно-марлевую повязку.

При повреждении здания взрывом входить в него следует с чрезвычайной осторожностью. Необходимо убедиться в отсутствии значительных повреждений перекрытий, стен, линий электро-, газо- и водоснабжения, а также утечек газа, очагов пожара.

Если взрыв вызвал возгорание, необходимо использовать первичные средства (огнетушители). Для недопущения распространения огня надо задействовать пожарные краны и гидранты.

Необходимо оказать помощь тем, кто оказался придавлен обломками конструкций. Помочь извлечь людей из завалов.

При спасении пострадавших следует соблюдать меры предосторожности от возможного обвала, пожара и других опасностей, осторожно вывести и оказать им первую медицинскую помощь, потушить горящую одежду, прекратить действие электрического тока, остановить кровотечение, перевязать раны, наложить шины при переломе конечностей.

Заключение

Наиболее частой причиной экологических катастроф являются техногенные аварии, т.е. аварии, вызванные деятельностью человека. В последнее двадцатилетие прошлого века термин "экологическая катастрофа" вошел в обиходный язык всех отраслей науки, которые занимаются изучением различных экстремальных воздействий и ищут пути преодоления их последствий. Экологические катастрофы - это такие экстремальные ситуации, после которых в окружающей природной среде остаются токсические факторы, влияющие как на состояние природы, так и на здоровье человека.

Техногенные катастрофы имеют начало, но не имеют окончания, они совершенно непредсказуемы, степень ущерба после них не уменьшается с годами, поскольку токсические факторы продолжают действовать в среде еще многие годы. После техногенных аварий в обществе формируется "нетерапевтическое сообщество", характеризующееся высокой степенью конфликтности, негативизмом, массовыми дезадаптивными реакциями, иногда отклоняющимся поведением и нередко рентными установками.

Длительность воздействия токсических факторов, необходимость принятия контрмер (например, проведение дезактивации больших территорий или вынужденное переселение больших групп населения), а также принятие специальных законодательных актов, которые на долгие годы определяют порядок социальных льгот для пострадавших - все это является факторами, формирующими патологические формы психического реагирования. В результате в экологическую катастрофу всегда оказывается вовлечено значительно больше населения, чем пострадало непосредственно в момент катастрофы.

Подводя итоги проделанной работы, хотелось бы сказать, что человек в процессе своей деятельности постоянно стремится улучшить условия существования, формируя искусственную среду обитания, повышая производительность труда, создавая большие технические системы, развивая экономику.

Но научно-технический прогресс не только способствует повышению производительности труда, росту материального благосостояния и интеллектуального потенциала общества, но и приводит к возрастанию риска аварий и катастроф технических систем, загрязнению биосферы в процессе производственной деятельности человека, что в свою очередь оказывает неблагоприятное влияние на здоровье человека и состояние генетического фонда людей.

Актуальность проблемы повышения уровня безопасности населения сегодня очевидна. Состояние здоровья человека зависит от социального, экономического и духовного развития личности, от его образа жизни, а также от здоровой окружающей среды.

Литература

1. Борисков Н.Ф. «Основы безопасности»; г. Харьков 2000г.

2. Бобок С.А., Юртушкин В.И. «Чрезвычайные ситуации: защита населения и территорий»; г. Москва 2004г.

3. Мешкова Ю.В., Юров С.М. «Безопасность жизнедеятельности»; г. Москва 1997г.

Размещено на Allbest.ru

Подобные документы

    Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат , добавлен 22.02.2008

    Сущность и признаки взрыва. Основные поражающие факторы, действующие при этом, зоны действия взрыва. Его действие на здания, сооружения, оборудование. Поражение человека. Правила безопасного поведения при угрозе взрыва, последствия и поведение после него.

    презентация , добавлен 08.08.2014

    Численность населения в зонах потенциально опасных объектов. Предприятия, использующие химические вещества, их классификация по степени опасности. Действия населения при оповещении о химической аварии и после выхода из зоны химического заражения.

    презентация , добавлен 21.11.2011

    Классификация промышленных ядов. Общий характер их действия на организм. Оценка токсичности химических веществ. Классы, показатели и параметры их опасности. Стадийность в установлении гигиенических нормативов вредных веществ в воздухе рабочей зоны.

    презентация , добавлен 30.03.2015

    Поражающие факторы ядерного взрыва. Острая лучевая болезнь: степени и стадии развития. Источники аварийно-опасных химических веществ по Тюменской области. Защита населения и территории от чрезвычайных ситуаций. Гражданская оборона на объекте экономики.

    практическая работа , добавлен 22.12.2015

    Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.

    контрольная работа , добавлен 25.05.2013

    Понятие о взрывчатых материалах, стабильность их химического состава. Классификация складов взрывчатых веществ и боеприпасов. Поверхностные и подземные хранилища. Правила безопасности при перевозке взрывчатых материалов. Знаки опасности и их описание.

    курсовая работа , добавлен 03.12.2012

    Признаки приближения цунами, способы защиты от смерча, причины возникновения землетрясений. Правила выхода из зоны химического заражения. Поражающие факторы ядерного взрыва. Способы передачи инфекции. Первая помощь при травмах головы и позвоночника.

    тест , добавлен 30.10.2012

    Физико-химические и токсические свойства токсичных химических веществ пульмонотоксического действия. Механизмы развития и клиническая картина токсического отека легких. Принципы оказания медицинской помощи при поражениях токсичными химическими веществами.

    контрольная работа , добавлен 25.10.2013

    Источники и причины возникновения природных чрезвычайных ситуаций. Признаки возможных поражений людей и способы защиты от ядерного взрыва. Действия отравляющих веществ на организм человека. Конструкция защитных устройств. Санитарная обработка людей.

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — химические соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) самораспространяющемуся химическому превращению с выделением тепла и образованием газообразных продуктов.

Взрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в получили так называемые конденсированные взрывчатые вещества, которые характеризуются высокой объёмной концентрацией тепловой энергии. В отличие от обычных топлив, требующих для своего горения поступления извне газообразного , такие взрывчатые вещества выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Специфический характер выделения тепловой энергии и преобразования её в кинетическую энергию продуктов взрыва и энергию ударной волны определяет основную область применения взрывчатых веществ как средства дробления и разрушения твёрдых сред (главным образом ) и сооружений и перемещения раздробленной массы (см. ).

В зависимости от характера внешнего воздействия химические превращения взрывчатых веществ происходят: при нагреве ниже температуры самовоспламенения (вспышки) — сравнительно медленное термическое разложение; при поджигании — горение с перемещением зоны реакции (пламени) по веществу с постоянной скоростью порядка 0,1-10 см/с; при ударно-волновом воздействии — детонация взрывчатых веществ.

Классификация взрывчатых веществ . Имеется несколько признаков классификации взрывчатых веществ: по основным формам превращения, назначению и химическому составу. В зависимости от характера превращения в условиях эксплуатации взрывчатые вещества подразделяют на метательные (или ) и . Первые используют в режиме горения, например, в огнестрельном оружии и ракетных двигателях, вторые — в режиме , например, в боеприпасах и на . Бризантные взрывчатые вещества, применяемые в промышленности, называются . Обычно к собственно взрывчатым относят только бризантные взрывчатые вещества. В химическом отношении перечисленные классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.

По восприимчивости к внешним воздействиям бризантные взрывчатые вещества подразделяют на первичные и вторичные. К первичным относят взрывчатые вещества, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Они также значительно более чувствительны к механическим воздействиям, чем вторичные. Детонацию вторичных взрывчатых веществ легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка несколько тысяч или десятков тысяч МПа. Практически это осуществляют с помощью небольших масс первичных взрывчатых веществ, помещённых в , детонация в которых возбуждается от луча огня и контактно передаётся вторичному взрывчатому веществу. Поэтому первичные взрывчатые вещества называются также . Другие виды внешнего воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных взрывчатых веществ. По этой причине широкое и целенаправленное использование бризантных взрывчатых веществ в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных взрывчатых веществах.

По химическому составу взрывчатые вещества подразделяют на индивидуальные соединения и взрывчатые смеси. В первых химические превращения при взрыве происходят в форме реакции мономолекулярного распада. Конечные продукты — устойчивые газообразные соединения, такие, как , окись и двуокись , пары воды.

Во взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или с частицами неразлагающихся веществ (например, металлов). Наиболее распространённые вторичные индивидуальные взрывчатые вещества относятся к азотсодержащим ароматическим, алифатическим гетероциклическим органическим соединениям, в том числе нитросоединениям ( , ), нитроаминам ( , ), нитроэфирам ( , ). Из неорганических соединений слабыми взрывчатыми свойствами обладает, например, аммиачная селитра.

Многообразие взрывчатых смесей может быть сведено к двум основным типам: состоящие из окислителей и горючих, и смеси, в которой сочетание компонентов определяет эксплуатационные или технологические качества смеси. Смеси окислитель — горючее рассчитаны на то, что значительная часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. В качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Окислители, как правило, при разложении выделяют свободный кислород, который необходим для окисления (с выделением тепла) горючих веществ или продуктов их разложения (газификации). В некоторых смесях (например, содержащиеся в качестве горючего металлические порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, а кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют с металлами с выделением тепла. Пример такой смеси — .

В качестве горючих применяют различного рода природные и синтетические органические вещества, которые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы ( , ) и твёрдые вещества (сажу). Наиболее распространённым видом бризантных взрывчатых смесей первого типа являются взрывчатые вещества, содержащие в качестве окислителя нитрат аммония. В зависимости от вида горючего они, в свою очередь, подразделяются на , аммотолы и аммоналы. Менее распространены хлоратные и перхлоратные взрывчатые вещества, в состав которых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода с пористым органическим поглотителем, смеси на основе других жидких окислителей. К взрывчатым смесям второго типа относятся смеси индивидуальных взрывчатых веществ, например динамиты; смеси тротила с гексогеном или тэном (пентолит), наиболее пригодные для изготовления .

В смеси обоих типов, кроме указанных компонентов, в зависимости от назначения взрывчатых веществ могут вводиться и другие вещества для придания взрывчатому веществу каких-либо эксплуатационных свойств, например, повышающие восприимчивость к средствам инициирования, или, напротив, снижающие чувствительность к внешним воздействиям; гидрофобные добавки — для придания взрывчатому веществу водостойкости; пластификаторы, соли-пламегасители — для придания предохранительных свойств (см. Предохранительные взрывчатые вещества). Основные эксплуатационные характеристики взрывчатых веществ (детонационные и энергетические характеристики и физико-химические свойства взрывчатых веществ) зависят от рецептурного состава взрывчатых веществ и технологии изготовления.

Детонационная характеристика взрывчатых веществ включает детонационную способность и восприимчивость к детонационному импульсу. От них зависят безотказность и надёжность взрывания. Для каждого взрывчатого вещества при данной плотности имеется такой критический диаметр заряда, при котором детонация устойчиво распространяется по всей длине заряда. Мерой восприимчивости взрывчатых веществ к детонационному импульсу служат критическое давление инициирующей волны и время его действия, т.е. величина минимального инициирующего импульса. Её часто выражают в единицах массы какого-либо инициирующего взрывчатого вещества или вторичного взрывчатого вещества с известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Она может передаваться и через инертные среды. Это имеет большое значение для , состоящих из нескольких патронов, между которыми возникают перемычки из инертных материалов. Поэтому для патронированных взрывчатых веществ проверяется показатель передачи детонации на расстояние через различные среды (обычно через воздух).

Энергетические характеристики взрывчатых веществ. Способность взрывчатых веществ при взрыве производить механическую работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого взрывчатого вещества. Поэтому коэффициент преобразования тепловой энергии в работу у металлсодержащих и предохранительных взрывчатых веществ, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) с высокой теплоёмкостью, ниже, чем у взрывчатых веществ, образующих только газообразные продукты. О способности взрывчатых веществ к местному дробящему или бризантному действию взрыва см. в ст. .

Изменение свойств взрывчатых веществ может происходить в результате физико-химических процессов, влияния температуры, влажности, под воздействием нестойких примесей в составе взрывчатых веществ и др. В зависимости от вида укупорки устанавливают гарантийный срок хранения или использования взрывчатых веществ, в течение которого нормированные показатели взрывчатых веществ либо не должны изменяться, либо их изменение происходит в пределах установленного допуска.

Основной показатель безопасности в обращении с взрывчатыми веществами — их чувствительность к механическим и тепловым воздействиям. Она обычно оценивается экспериментально в лабораторных условиях по специальным методикам. В связи с массовым внедрением механизированных способов перемещения больших масс сыпучих взрывчатых веществ к ним предъявляются требования минимальной электризации и низкой чувствительности к разряду статического электричества.

Историческая справка . Первым из взрывчатых веществ был изобретенный в Китае (7 в.) чёрный (дымный) порох. В Европе он известен с 13 в. С 14 в. порох применяли в качестве метательного средства в огнестрельном оружии. В 17 в. (впервые на одном из рудников Словакии) порох использовали на взрывных работах в горном деле, а также для снаряжения артиллерийских гранат (разрывных ядер). Взрывчатое превращение чёрного пороха возбуждалось поджиганием в режиме взрывного горения. В 1884 французским инженером П. Вьелем был предложен бездымный порох. В 18-19 вв. был синтезирован ряд химических соединений, обладающих взрывчатыми свойствами, в том числе пикриновая кислота, пироксилин, нитроглицерин, тротил и др., однако их использование в качестве бризантных детонирующих взрывчатых веществ стало возможным только после открытия русским инженером Д. И. Андриевским (1865) и шведским изобретателем А. Нобелем (1867) гремучертутного запала (капсюля-детонатора). До этого в России по предложению Н. Н. Зинина и В. Ф. Петрушевского (1854) нитроглицерин использовался при подрывах взамен чёрного пороха в режиме взрывного горения. Сама гремучая ртуть была получена ещё в конце 17 в. и повторно английским химиком Э. Хоуардом в 1799, но способность её детонировать тогда не была известна. После открытия явления детонации бризантные взрывчатые вещества получили широкое применение в горном и военном деле. Среди промышленных взрывчатых веществ первоначально по патентам А. Нобеля наибольшее распространение получили гурдинамиты, затем пластичные динамиты, порошкообразные нитроглицериновые смесевые взрывчатые вещества. Аммиачно-селитренные взрывчатые вещества были запатентованы ещё в 1867 И. Норбином и И. Ольсеном (Швеция), но их практическое использование в качестве промышленных взрывчатых веществ и для снаряжения боеприпасов началось лишь в годы 1-й мировой войны 1914-18. Более безопасные и экономичные, чем динамиты, они в 30-х годах 20 века начали всё в больших масштабах применяться в промышленности.

После Великой Отечественной войны 1941-45 аммиачно-селитренные взрывчатые вещества, вначале преимущественно в виде тонкодисперсных аммонитов, стали доминирующим видом промышленных взрывчатых веществ в CCCP. В других странах процесс массовой замены динамитов на аммиачно-селитренные взрывчатые вещества начался несколько позже, примерно с середины 50-х гг. С 70-х гг. основные виды промышленных взрывчатых веществ — гранулированные и водосодержащие аммиачно-селитренные взрывчатые вещества простейшего состава, не содержащие нитросоединений или других индивидуальных взрывчатых веществ, а также смеси, содержащие нитросоединения. Тонкодисперсные аммиачно-селитренные взрывчатые вещества сохранили своё значение главным образом для изготовления патронов-боевиков, а также для некоторых специальных видов взрывных работ. Индивидуальные взрывчатые вещества, в особенности тротил, широко применяются для изготовления шашек-детонаторов, а также для длительного заряжания обводнённых скважин, в чистом виде () и в высоководоустойчивых взрывчатых смесях, гранулированных и суспензионных (водосодержащих). Для в глубоких применяют и .

Взрывчатое вещество (ВВ) - химическое соединение или их смесь, способное в результате определённых внешних воздействий или внутренних процессов взрываться, выделяя тепло и образуя сильно нагретые газы.

Комплекс процессов, который происходит в таком веществе, называется детонацией.

Традиционно к взрывчатым веществам также относят соединения и смеси, которые не детонируют, а горят с определенной скоростью (метательные пороха, пиротехнические составы).

Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Взрывчатое вещество (или смесь) - твердое или жидкое вещество (или смесь веществ), которое само по себе способно к химической реакции с выделением газов при такой температуре и таком давлении и с такой скоростью, что это вызывает повреждение окружающих предметов. Пиротехнические вещества включаются в эту категорию даже в том случае, если они не выделяют газов.

Пиротехническое вещество (или смесь) - вещество или смесь веществ, которые предназначены для производства эффекта в виде тепла, огня, звука или дыма или их комбинации.

Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, металлические добавки и другие компоненты.

Важнейшими характеристиками взрывчатых веществ являются:

Скорость взрывчатого превращения (скорость детонации или скорость горения),

Давление детонации,

Теплота взрыва,

Состав и объём газовых продуктов взрывчатого превращения,

Максимальная температура продуктов взрыва,

Чувствительность к внешним воздействиям,

Критический диаметр детонации,

Критическая плотность детонации.

При детонации разложение ВВ происходит настолько быстро, что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают 2 основных вида действия ВВ:

Бризантное (местного действия),

Фугасное (общего действия).

Бризантность - это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика - скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ. Измеряется бризантность в миллиметрах.

Фугасность - иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ. Измеряется фугасность в кубических сантиметрах.

Отсюда становится достаточно ясно, что для различных целей подходят различные ВВ. Например, для взрывных работ в грунте (в шахте, при устройстве котлованов, разрушении ледяных заторов и т.п.) больше подойдет ВВ, обладающее наибольшей фугасностью, а бризантность подойдет любая. Наоборот, для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

ВВ широко используются и в промышленности для производства различных взрывных работ.

Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн.

В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

В Российской Федерации запрещена свободная реализация взрывчатых веществ, средств взрывания, порохов, всех видов ракетного топлива, а также специальных материалов и специального оборудования для их производства, нормативной документации на их производство и эксплуатацию.

У ВВ существуют индивидуальные химические соединения.

Большинство таких соединений представляют собой кислородосодержащие вещества, обладающие свойством полностью или частично окисляться внутри молекулы без доступа воздуха.

Существуют соединения, не содержащие кислород, но обладающие свойством взрываться. Они, как правило, обладают повышенной чувствительностью к внешним воздействиям (трению, удару, нагреву, огню, искре, переходу между фазовыми состояниями, другим химическим веществам) и относятся к веществам с повышенной взрывоопасностью.

Существуют взрывчатые смеси, которые состоят из двух и более химически не связанных между собой веществ.

Многие взрывчатые смеси состоят из индивидуальных веществ, не имеющих взрывчатых свойств (горючих, окислителей и регулирующих добавок). Регулирующие добавки применяют для:

Снижения чувствительности ВВ к внешним воздействиям. Для этого добавляют различные вещества - флегматизаторы (парафин, церезин, воск, дифениламин и др.)

Для увеличения теплоты взрыва. Добавляют металлические порошки, например, алюминий, магний, цирконий, бериллий и прочие восстановители.

Для повышения стабильности при хранении и применении.

Для обеспечения необходимого физического состояния.

Взрывчатые вещества классифицируют по физическому состоянию:

Газообразные,

Гелеобразные,

Суспензионные,

Эмульсионные,

Твердые.

В зависимости от типа взрыва и чувствительности к внешним воздействиям все взрывчатые вещества делят на 3 группы:

1.Инициирующие
2.Бризантные
3.Метательные

Инициирующие (первичные)

Инициирующие ВВ предназначаются для возбуждения взрывчатых превращений в зарядах других ВВ. Они отличаются повышенной чувствительностью и легко взрываются от простых начальных импульсов (удара, трения, накола жалом, электрической искры и т. д.).

Бризантные (вторичные)

Бризантные ВВ менее чувствительны к внешним воздействиям, и возбуждение взрывных превращений в них осуществляется главным образом с помощью инициирующих ВВ.

Бризантные ВВ применяют для снаряжения боевых частей ракет различных классов, снарядов реактивной и ствольной артиллерии, артиллерийских и инженерных мин, авиационных бомб, торпед, глубинных бомб, ручных гранат и т. д.

Значительное количество бризантных ВВ расходуется в горном деле (вскрышные работы, добыча полезных ископаемых), в строительстве (подготовка котлованов, разрушение скальных пород, разрушение ликвидируемых строительных конструкций), в промышленности (сварка взрывом, импульсная обработка металлов и др.).

Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.

Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения.

Так же существует классификация взрывчатых веществ по направлению применения на военные и промышленные для горного дела (добыча полезных ископаемых), для строительства (плотин, каналов, котлованов), для разрушения строительных конструкций, антисоциального применения (терроризм, хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.

Виды взрывчатых веществ

Существует огромное количество взрывчатых веществ, такие как, аммиачно-селитренные взрывчатые вещества, пластит, гексоген, мелинит, тротил, динамит, эластит и многие другие взрывчатые вещества.

1. Пластит - очень популярная в средствах массовой пропаганды взрывчатка. Особенно, если требуется подчеркнуть особенное коварство супостата, ужасные возможные последствия несостоявшегося взрыва, явный след спецслужб, особенно сильные страдания мирного населения под разрывами бомб. Как только ее не называют - пластит, пластид, пластиковая взрывчатка, пластичная взрывчатка, пластическая взрывчатка. Одного спичечного коробка пластида достаточно, чтобы в клочья разнести грузовик, пластиковой взрывчатки, лежащей в кейсе достаточно, чтобы разрушить 200-квартирный дом до основания.

Пластит - это бризантное взрывчатое вещество нормальной мощности. Пластит обладает примерно такими же взрывчатыми характеристиками, что и тротил и все его отличие состоит в удобстве применения при производстве взрывных работ. Особенно это удобство заметно при подрывании металлических, железобетонных и бетонных конструкций.

Например, металл очень хорошо противостоит взрыву. Чтобы перебить металлическую балку необходимо обложить ее по сечению взрывчаткой, причем так, чтобы она как можно плотнее прилегала к металлу. Ясно, что сделать это намного быстрее и легче, имея под рукой ВВ подобное пластилину, нежели подобное деревянным чуркам. Пластит же легко разместить так, что он будет плотно прилегать к металлу даже там, где размещению тротила мешают заклепки, болты, уступы и т.п.

Основные характеристики:

1. Чувствительность: Практически не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Надежно взрывается от стандартного капсюля-детонатора, погруженного в массу ВВ на глубину не менее 10мм.

2. Энергия взрывчатого превращения- 910 ккал/кг.

3. Скорость детонации:7000 м/сек.

4. Бризантность: 21мм.

5. Фугасность:280 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой. Под длительным воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит ярким энергичным пламенем. Горение в замкнутом пространстве большого количества может перерасти в детонацию.

7. Продолжительность и условия работоспособного состояния. Продолжительность не ограничивается. Длительное (20-30 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Пластичное глинообразное вещество. При отрицательных температурах значительно снижает пластичность. При температурах ниже -20 градусов затвердевает. С ростом температуры пластичность возрастает. При +30 градусах и выше теряет механическую прочность. При +210 градусах загорается.

9. Плотность:1.44 г./куб см.

Пластит представляет собой смесь гексогена и пластифицирующих веществ (церезин, парафин и др.).

Внешний вид и консистенция сильно зависит от применяемых пластификаторов. Может иметь консистенцию от пасты до плотной глины.

Пластит поступает в войска в виде брикетов массой 1 кг обернутых коричневой парафинированной бумагой.

Некоторые типы пластита могут упаковываться в тубы или выпускаться в виде лент. Такие пластиты имеют консистенцию резины. Отдельные типы пластита имеют клеящие добавки. Такое ВВ обладает способностью прилипать к поверхностям.

2. Гексоген - взрывчатое вещество, относящееся к группе ВВ повышенной мощности. Плотность 1.8 г/куб.см., температура плавления 202 градуса, температура вспышки 215-230 градусов, чувствительность к удару 10 кг. груза 25см., энергия взрывчатого превращения 1290 ккал/кг, скорость детонации 8380 м/сек., бризантность 24мм., фугасность 490 куб.см

Нормальное агрегатное состояние - мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв).

В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей. Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов. Например, морских мин. С этой целью чистый гексоген смешивают с парафином, окрашивают суданом в оранжевый цвет и прессуют до плотности 1.66 г./куб.см. В смеси добавляют аллюминевую пудру. Все эти работы проводятся в промышленных условиях на специальном оборудовании

Название "гексоген" стало популярным в средствах массовой пропаганды после памятных диверсионных актов в Москве и Волгодонске, когда подряд было взорвано несколько домов.

Гексоген в чистом виде применяется крайне редко, применение его в этом виде весьма опасно для самих взрывников, производство требует хорошо налаженного промышленного процесса.

3. Тротил – взрывчатое вещество нормальной мощности.

Основные характеристики:

1. Чувствительность: Не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Прессованный и порошкообразный тротил хорошо чувствителен к детонации и надежно взрывается от стандартных капсюлей-детонаторов, запалов.

2. Энергия взрывчатого превращения - 1010 ккал/кг.

3. Скорость детонации:6900 м/сек.

4. Бризантность:19мм.

5. Фугасность:285 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой, и изменении агрегатного состояния (в расплавленном виде). Под длительном воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит желтым, сильно коптящим пламенем.

7. Продолжительность и условия работоспособного состояния:Продолжительность не ограничивается (надежно срабатывает тротил, изготовленный в начале тридцатых годов). Длительное (60-70 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Твердое вещество. Применяется в порошкообразном, чешуированом и твердом виде.

9. Плотность:1.66 г./куб см.

В обычных условиях тротил представляет собой твердое вещество. Плавится при температуре +81 градус, при температуре +310 градусов загорается.

Тротил является продуктом воздействия смеси азотной и серной кислот на толуол. На выходе получается чешуированный тротил (отдельные мелкие чешуйки). Из чешуированного тротила механической обработкой можно получить порошкообразный, прессованный тротил, нагреванием плавленый тротил.

Тротил нашел самое широкое применение из-за простоты и удобства его механической обработки (очень легко изготавливать заряды любого веса, заполнять любые полости, резать, сверлить и т.п.), высокой химической стойкости и инертности, невосприимчивости к внешним воздействиям. А значит, он очень надежен и безопасен в применении. В то же время он обладает высокими взрывными характеристиками.

Тротил применяется как в чистом виде, так и в смесях с другими ВВ, причем в химические реакции тротил с ними не вступает. В смеси с гексогеном, тетрилом, тэном тротил понижает чувствительность последних, а в смеси с аммиачно-селитренными ВВ тротил повышает их взрывчатые свойства, повышает химическую стойкость и снижает гигроскопичность.

Тротил в России является основным ВВ для снаряжения снарядов, ракет, минометных мин, авиабомб, инженерных мин и фугасов. Тротил применяется как основное ВВ при проведении подрывных работ в грунте, подрывании металлических, бетонных, кирпичных и иных конструкций.

В России для подрывных работ тротил поставляется:

1.В чешуированном виде в бумажных мешках из крафт-бумаги весом 50кг.

2.В прессованном виде в деревянных ящиках (шашки 75, 200, 400г.)

Тротиловые шашки выпускаются трех типоразмеров:

Большая - размером 10х5х5 см. и массой 400г.

Малая - размером 10х5х2.5 см. и массой 200г.

Буровая - диаметром 3 см., длиной 7см. и массой 75г.

Все шашки обернуты парафинированной бумагой красного, желтого, серого или серо-зеленого цвета. На боковой стороне имеется надпись "Тротиловая шашка".

Из больших и малых тротиловых шашек составляются подрывные заряды нужной массы. Ящик с тротиловыми шашками может также использоваться как подрывной заряд массой 25 кг. Для этого в верхней крышке в центре имеется отверстие для запала, закрытое легко удаляемой дощечкой. Шашка под этим отверстием уложена так, чтобы ее запальное гнездо приходилось как раз под отверстием в крышке ящика. Ящики окрашены в зеленый цвет, снабжены деревянными или веревочными ручками для переноски. На ящиках нанесена соответствующая маркировка.

Диаметр буровой шашки соответствует диаметру стандартного бура для сверления горных пород. Эти шашки используются для комплектования буровых зарядов при разрушении горных пород.

В инженерные войска тротил также поставляется в виде готовых зарядов в металлической оболочке, имеющей гнезда для различного типа запалов и взрывателей, и приспособления для быстрого закрепления заряда на разрушаемом объекте.

Взрывчатка – самодельное взрывное устройство.

Пожалуй, нет сейчас в мире ни одного государства, которое не сталкивалось бы с проблемой использования самодельных взрывных устройств. Что ж, самодельные взрывные устройства (в свое время их метко называли адскими машинками) давно уже стали излюбленным орудием и террористов международного масштаба, и полусумасшедших юнцов, воображающих, что они борются за светлое будущее всего прогрессивного человечества. И немало ни в чем не повинных людей было убито или ранено в результате террористических актов.

Взрывчатка - это химия. Разные компоненты взрывчатых веществ добываются разными химическими реакциями и обладают разной взрывной силой и разными стимулами для воспламенения, такими, например, как нагревание, удар или трение. Конечно, можно выстроить возрастающий рейтинг взрывчатых веществ по весу заряда. Но следует знать, что простое удвоение веса еще не означает удвоения взрывного эффекта.

Химическая взрывчатка бывает двух категорий - пониженной и повышенной мощности (речь идет о скорости воспламенения).

Самые распространенные взрывчатые вещества пониженной мощности - это черный порох (открыт в 1250г), оружейный хлопок и нитрохлопок. Изначально они использовались в артиллерии, для заряжения мушкетов и тому подобного, так как в этом качестве они лучше всего раскрывают свои характеристики. При воспламенении в замкнутом пространстве они выделяют газы, создающие давление, которое собственно и вызывает взрывной эффект.

Взрывчатые вещества повышенной мощности отличаются от взрывчатых веществ пониженной мощности весьма существенно. Первые с самого начала использовались как детонирующие, потому что при детонации распадались, создавая сверхзвуковые волны, которые, проходя через вещество, разрушали его молекулярную структуру и выделяли супергорячие газы. В результате, происходил взрыв несоизмеримо более сильный, чем при использовании взрывчатки пониженной мощности. Еще одним отличительным свойством взрывчатых веществ этого типа является безопасность в обращении - чтобы привести их к взрыву, требуется мощный детонатор.

Но, чтобы в цепи произошел взрыв, необходимо сначала зажечь огонь. Вы ведь не можете сразу заставить гореть кусочек угля. Вам необходима цепь, состоящая из простого листа бумаги, чтобы сначала развести костер, куда потом нужно положить дрова, которые, в свою очередь, и смогу зажечь уголь.

Такая же цепь необходима и для детонации взрывчатых веществ повышенной мощности. Инициатором будет взрывной патрон или детонатор, состоящий из небольшого количества инициирующего вещества. Иногда детонаторы делают двусоставными - с более чувствительным взрывным веществом и катализатором. Частички взрывчатки, используемой в детонаторах, обычно по размеру не превышают горошину. Детонаторы бывают двух типов - вспышечные и электрические. Вспышечные детонаторы действуют в результате химического (детонатор состоит из химических веществ, воспламеняющихся после детонации) или механического (боек, как в ручной гранате или пистолете, бьет по капсюлю, а затем происходит взрыв) воздействия.

Электрический взрыватель соединен с взрывчаткой электрическими проводами. Электрический разряд нагревает соединительные провода, и детонатор, естественно, срабатывает. Террористы, в основном, используют для своих взрывных устройств электрические детонаторы, а военные предпочитают вспышечные детонаторы.

Встречаются простые, последовательные и параллельные электрические цепи террористических взрывных устройств. Простые цепи состоят из заряда взрывчатки, электрического детонатора (чаще всего - из двух, так как террористы обычно подстраховываются из опасения, что один детонатор может не сработать), батареи или другого источника электроэнергии и выключателя, который предотвращает срабатывание устройства.

Кстати, террористы часто гибнут, замыкая цепи взрывных устройств драгоценностями (например, своими кольцами, часами или чем-нибудь в этом роде), и последовательно ставя в цепь второй выключатель в качестве предохранителя. Если велика вероятность того, что бомба может быть обезврежена на улице, террористы вполне могут добавить еще параллельный выключатель. Впрочем, электрические переключатели, которые используются в цепях террористических бомб, имеют бесконечное количество вариаций и различий. Ведь, в конечном итоге, они зависят от фантазии и технических возможностей мастера. А также от поставленной цели. А это значит, что проверять и детально изучать все варианты просто нет смысла.

Классификация ВВ и их основные свойства

ВВ и стандартные заряды ВС РФ.

Общие понятия о ВВ.

Взрывчатыми веществами (ВВ) называются хи­мические соединения или смеси, которые под влиянием определенных внешних воздействий способны к бы­строму само распространяющемуся химическому превра­щению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, произ­водят механическую работу. Такое химическое превра­щение ВВ принято называтьвзрывчатым превра­щением.

Взрывчатое превращение в зависимости от свойств взрывчатого вещества и вида воздействия на него может протекать в форме взрыва или горения.

Взрыв распространяется по взрывчатому веществу с большой переменной скоростью, измеряемой сотнями или тысячами метров в секунду. Процесс взрывчатого превращения, обусловленный прохождением ударной волны по взрывчатому веществу и протекающий с по­стоянной (для данного вещества при данном его состоя­нии) сверхзвуковой скоростью, называетсядетона­цией .

В случае снижения качеств ВВ (увлажнение, слеживание) или недостаточного начального импульса дето­нация может перейти в горение или совсем затухнуть. Такая детонация заряда ВВ называется неполной. Горение - процесс взрывчатого превращения, обус­ловленный передачей энергии от одного слоя взрывчатого вещества к другому путем теплопроводности и из­лучения тепла газообразными продуктами,

Процесс горения ВВ (за исключением инициируюших веществ) протекает сравнительно медленно, со скоростями, не превышающими нескольких метров в секунду.

Скорость горения в значительной степени зависит от внешних условий и в первую очередь от давления в окружающем пространстве. С увеличением давления скорость горения возрастает; при этом горение может в некоторых случаях переходить во взрыв или в детона­цию. Горение бризантных ВВ в замкнутом объеме, как правило, переходит в детонацию.

Возбуждение взрывчатого превращения ВВ на­зывается инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:

Механическим (удар, накол, трение);

Тепловым (искра, пламя, нагревание);

Электрическим (нагревание, искровой разряд);

Химическим (реакции с интенсивным выделением тепла);

Взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

Классификация ВВ и их основные свойства

Все ВВ, применяемые при производстве подрыв­ных работ и снаряжении различных боеприпасов, де­лятся на три основные группы: - инициирующие ВВ; - бризантные ВВ; - метательные ВВ (пороха).

ВВ в зависимости от их природы и состояния об­ладают определенными взрывчатыми характе­ристиками. Наиболее важными из них являются: - чувствительность к внешним воздействиям; - энергия (теплота) взрывчатого превращения; - скорость детонации; - бризантность; - фугасность (работоспособность). Количественные значения основных характеристик некоторых ВВ и способы их определения приведены в приложении 1.

ИНИЦИИРУЮЩИЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА

Инициирующие ВВ обладают высокой чувстви­тельностью к внешним воздействиям (удару, трению и воздействию огня). Взрыв сравнительно небольших количеств инициирующих ВВ в непосредственном кон­такте с бризантными ВВ вызывает детонацию по­следних.

Вследствие указанных свойств инициирующие ВВ применяются исключительно для снаряжения средств инициирования (капсюлей-детонаторов, капсюлей-вос­пламенителей и др.).

К инициирующим ВВ относятся: гремучая ртуть, азид свинца, тенерес (ТНРС). К ним могут быть отне­сены и так называемые капсюльные составы, взрыв ко­торых может использоваться для возбуждения детона­ции инициирующих ВВ или для воспламенения порохов и изделий из них.

Гремучая ртуть (фульминат ртути) представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Она ядовита, плохо растворяется в холодной и горячей воде.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10% влажности гремучая ртуть только горит, не детонируя, а при 30% влажности не горит и не детонирует). Применяется для снаряжения капсюлей-детонаторов и капсюлей-воспламенителей.

Гремучая ртуть при отсутствии влаги не взаимодей­ствует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъедание алюминия). Поэтому гильзы гремуче-ртутных капсюлей изготовляются из меди или мельхиора, а не из алюминия.

Азид свинца (азотистоводороднокислый свинец) представляет собой мелкокристаллическое вещество бе­лого цвета, слабо растворяющееся в воде. К удару, трению и действию огня азид свинца менее чувствителен, чем гремучая ртуть. Для обеспечения на­дежности возбуждения детонации азида свинца дей­ствием пламени его покрывают слоем тенереса. Для воз­буждения детонации в азиде свинца посредством накола его покрывают слоем специального накольного состава.

Азид свинца не теряет способности к детонации при увлажнении и низких температурах; инициирующая спо­собность его значительно выше, чем инициирующая спо­собность гремучей ртути. Применяется для снаряжения капсюлей-детонаторов.

Азид свинца химически не взаимодействует с алюми­нием, но активно взаимодействует с медью и ее спла­вами, поэтому гильзы капсюлей, снаряжае­мых азидом свинца, изготовляются из алюминия, а не из меди.

Тенерес (тринитрорезорцинат свинца, ТНРС) представляет собой мелкокристаллическое несыпучее ве­щество темно-желтого цвета; растворимость его в воде незначительна.

Чувствительность тенереса к удару ниже чувстви­тельности гремучей ртути и азида свинца; по чувстви­тельности к трению он занимает среднее место между гремучей ртутью и азидом свинца. Тенерес достаточно чувствителен к тепловому воздействию; под влиянием прямого солнечного света он темнеет и разлагается. С металлами тенерес химически не взаи­модействует.

Ввиду низкой инициирующей способности тенерес не имеет самостоятельного применения, а используется в некоторых типах капсюлей-детонаторов с целью обеспечения безотказности инициирования азида свинца.

Капсюльные составы, используемые для снаря­жения капсюлей-воспламенителей, представляют собой механические смеси ряда веществ, наиболее распростра­ненными из которых являются гремучая ртуть, хлорат калия (бертолетова соль) и трехсернистая сурьма (антимоний).

Под действием удара или накола капсюля-воспламе­нителя происходит воспламенение капсюльного состава с образованием луча огня, способного воспламенить по­рох или вызвать детонацию инициирующего ВВ.

БРИЗАНТНЫЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА

Бризантные ВВ более мощны и значительно ме­нее чувствительны к различного рода внешним воздей­ствиям, чем инициирующие ВВ. Возбуждение детонации в бризантных ВВ обычно производится взрывом заряда того или иного инициирующего ВВ, входящего в состав капсюлей-детонаторов, или заряда другого бризантного ВВ (промежуточного детонатора).

Сравнительно невысокая чувствительность бризант­ных ВВ к удару, трению и тепловому воздействию, а следовательно, и достаточная безопасность обусловли­вают удобство их практического применения. Бризантные ВВ применяются в чистом виде, а также в виде сплавов и смесей друг с другом. По мощности бризантные ВВ делятся на три группы: - ВВ повышенной мощности; - ВВ нормальной мощности; - ВВ пониженной мощности.

Взрывчатые вещества повышенной мощности

Тэн (тетранитропентаэритрит, пентрит) представ­ляет собой белое кристаллическое вещество, негигроско­пичное и нерастворимое в воде, хорошо прессуемое до плотности 1,6.

По чувствительности к механическим воздействиям тэн относится к числу наиболее чувствительных из всех практически применяемых бризантных ВВ. От удара ру­жейной пули (при простреле) он взрывается,

Тэн горит энергично белым пламенем без копоти. При сжигании тэна горение может перейти в детонацию. С металлами тэн химически не взаимо­действует.

Тэн применяется для изготовления детонирующих шнуров и снаряжения капсюлей-детонаторов, а во флегматизированном состоянии может использоваться для изготовления промежуточных детонаторов и снаряжения некоторых боеприпасов. Флегматизированный тэн под­крашивается в розовый или в оранжевый цвет.

Гексоген (триметилентринитроамин) представ­ляет собой мелкокристаллическое вещество белого цвета; он не имеет ни вкуса, ни запаха, негигроскопи­чен, в воде не растворяется.

Гексоген в чистом виде прессуется плохо, поэтому его часто применяют с добавкой небольшого количества флегматизатора (сплав парафина с церезином), кото­рый улучшает прессуемость гексогена и в то же время понижает его чувствительность к механическим воз­действиям. Флегматизированный гексоген обычно под­крашивается в оранжевый цвет (путем добавки неболь­шого количества Судана) и прессуется до плотности 1,66.

Чувствительность гексогена к удару ниже, чем чув­ствительность тэна, но от удара ружейной пули (при простреле) он может взрываться. Гексоген горит энер­гично белым пламенем; горение его может перейти в детонацию. Химически гексоген более стоек, чем тэн; с металлами химически не взаимодей­ствует.

В чистом виде гексоген применяется только для сна­ряжения капсюлей-детонаторов. Для снаряжения неко­торых специальных боеприпасов применяется флегматизированный гексоген.

В сплаве с тротилом, например в соотношении 50:50 (ТГ-50), гексоген применяют для снаряжения кумулятивных зарядов. Для приготовления указанного сплава тротил расплавляется и в него вводится и тща­тельно размешивается порошкообразный гексоген. В сплаве с тротилом гексоген менее чувствителен к внешним воздействиям и более удобен для снаряжения боеприпасов путем заливки.

Для повышения энергии взрывчатого превращения в сплавы гексогена с тротилом добавляется алюминий в порошке. Примерами таких сплавов являются морская смесь (МС) и сплав ТГА.

Тетрил (тринитрофенилметилнитроамин) пред­ставляет собой кристаллическое вещество ярко-желтого цвета без запаха, солоноватое на вкус. Тетрил негигро­скопичен и нерастворим в воде, достаточно легко прес­суется до плотности 1,60-1,65.

Чувствительность тетрила к механическому воздей­ствию несколько ниже, чем чувствительность тэна и гек­согена, но все же от прострела ружейной пулей он так­же может взрываться.

Тетрил горит энергично голубоватым пламенем без копоти; горение его может перейти в детонацию. С металлами тетрил химически не взаи­модействует. Применяется он для изготовления промежуточных детонаторов в различных боеприпасах и для снаряжения некоторых типов капсюлей-детона­торов.

Взрывчатые вещества нормальной мощности

Тротил (тринитротолуол, тол, ТНТ) - основное бризантное ВВ, применяемое для подрывных работ и снаряжения большинства боеприпасов; он представляет собой кристаллическое вещество от светложелтого до светло-коричневого цвета, горьковатое на вкус. Тротил негигроскопичен и практически нерастворим в воде; в производстве он получается в виде порошка (порошкообразный тротил), мелких чешуек (чешуированный тротил) или гранул (гранулированный тротил). Чешуированный тротил хорошо прессуется до плотности 1,6.

Тротил плавится без разложения при температуре около 81°; плотность затвердевшего после плавления (литого) тротила 1,55-1,60; температура вспышки около 310°; на открытом воздухе тротил горит желтым, сильно коптящим пламенем без взрыва. Горение тротила в замкнутом пространстве может переходить в детонацию.

К удару, трению и тепловому воздействию тротил малочувствителен. Прессованный и литой тротил от прострела обычной ружейной пулей не взрывается и не загорается, с металлами химически не взаимодействует.

Восприимчивость тротила к детонации зависит от его состояния. Прессованный и порошкообразный тротил безотказно детонирует от капсюля-детонатора № 8, литой же, чешуированный и гранулированный тротил детонирует только от промежуточного детонатора из прессованного тротила или другого бризантного ВВ.

Химическая стойкость тротила весьма высока; дли тельное нагревание при температуре до 130° мало изменяет его взрывчатые свойства, он не теряет этих свойств и после длительного пребывания в воде. Под влиянием солнечного света тротил претерпевает физико-химиче­ские превращения, сопровождающиеся изменением его цвета и некоторым повышением чувствительности к внешним воздействиям.

Тротил получается в результате обработки толуола (жидкий продукт коксохимической и нефтеперерабаты­вающей промышленности) смесью азотной и серной кислот. Прессованием или заливкой из него изготовляются различные заряды и подрывные шашки.

Рис. 1.1. Подрывные тротиловые шашки

а - большая; б - малая; в - буровая; 1 - запальное гнездо

Для снаряжения боеприпасов тротил применяется не только в чистом виде, но и в сплавах с другими ВВ (гексогеном, тетрилом и др.). Порошкообразный тротил входит в состав некоторых ВВ пониженной мощности (например, аммонитов).

Для производства подрывных работ тротил, как пра­вило, применяется в виде прессованных подрывных ша­шек (рис. 1):

Больших - размерами 50´50´100 мм и весом 400 г;

Малых - размерами 25´50´100 мм и весом 200 г;

Буровых (цилиндрических) - длиной 70 мм, диа­метром 30 мм и весом 75 г.

Все подрывные шашки имеют запальные гнезда для капсюля-детонатора ¹ 8. Для более надежного сочленения со средствами взрывания запальные гнезда некоторых шашек делаются с резьбой. К над­писи на бумажной обертке таких шашек добавлено: «С резьбой 1М10Х1Н» или «С фольговой обкладкой резьбы».

Для защиты шашек от внешних воздействий их по­крывают слоем парафина и обертывают бумагой, на которую затем наносится еще один слой парафина. Ме­сто расположения запального гнезда шашки обозна­чается черным кружком.

В целях обеспечения удобств хранения, перевозки и применения подрывные шашки упаковываются в дере­вянные ящики. В каждый ящик уло­жено 30 больших и 65 малых или 250 буровых шашек. Ящик, содержащий большие и малые шашки, может применяться в качестве сосредоточенного заряда весом 25 кг без снятия крышки. Для этого в крышке имеется отверстие, закрытое съемной планкой, против которой уложена большая шашка с резьбой.

Пикриновая кислота (тринитрофенол, мелинит) представляет собой кристаллическое вещество желтого цвета, горькое на вкус. Пыль пикриновой кислоты сильно раздражает дыхательные пути.

Пикриновая кислота в холодной воде растворяется слабо, в горячей-несколько лучше; растворы ее сильно окрашивают кожу и ткани в желтый цвет. Плотность прессованной и литой пикриновой кислоты составляет приблизительно 1,6.

Чувствительность пикриновой кислоты к удару, тре­нию и тепловому воздействию несколько выше чувстви­тельности тротила; от прострела ружейной пулей она может взрываться. Пикриновая кислота горит сильно коптящим пламенем, но несколько энергичнее, чем тро­тил. Горение ее может переходить в детонацию.

Пикриновая кислота по сравнению с тротилом обла­дает несколько лучшей восприимчивостью к детонации. Порошкообразная и прессованная пикриновая кислота взрывается от капсюля-детонатора ¹ 8. Литая пикри­новая кислота от капсюля-детонатора ¹ 8 детонирует не всегда; поэтому для взрыва ее требуется про­межуточный детонатор.

Пикриновая кислота - вещество химически стойкое, но весьма активное; она химически взаимодей­ствует с металлами (за исключением олова), образуя соли, называемые пикратами.

Пикраты представляют собой взрывчатые вещества, в большинстве случаев более чувствительные к механи­ческим воздействиям, чем сама пикриновая кислота. Особенно чувствительными являются пик­раты железа и свинца.

Пикриновая кислота применяется как в чистом виде, так и в виде различных сплавов с динитронафталином для снаряжения некоторых боеприпасов.

Пластичное ВВ (пластит-4) представляет собой однородную тестообразную массу светло-кремового цве­та плотностью 1,4. Пластит изготовляется из порошко­образного гексогена (80%) и специального пластифика­тора (20%) путем тщательного их перемешивания.

Пластит-4 негигроскопичен и нерастворим в воде; легко деформируется усилием рук. Легкая деформируемость позволяет использовать пластит для изготовления зарядов требуемой формы.

Пластические свойства пластита-4 сохраняются при температуре от -30° до +50°. При отрицательных тем­пературах пластичность его несколько снижается; при температурах выше +25° он размягчается и прочность изготовленных из него зарядов уменьшается.

К удару, трению и тепловым воздействиям пластит-4 малочувствителен (его чувствительность лишь немного выше чувствительности тротила). При простреле ружей­ной пулей, как правило, не взрывается и не загорается; при зажигании горит; горение его в количестве до 50 кг протекает энергично, но без взрыва. С металлами пластит-4 химически не взаимодействует. Детонирует он от капсюля-детонатора, погружен­ного в массу заряда на глубину не менее 10 мм.

Пластит-4 не обладает свойствами липкого вещества, поэтому при производстве подрывных работ для надеж­ного крепления к объекту заряды из пластита-4 необхо­димо применять в тканевых или пластикатовых обо­лочках. Пластит-4 поставляется в войска в виде брикетов размером 70х70х145 мм, весом 1 кг, обернутых бума­гой. Брикеты по 32 шт. упаковываются в деревянные ящики.

Взрывчатые вещества пониженной мощности

Из ВВ пониженной мощности наиболее широко применяютсяаммиачноселитренные взрывчатые веще­ства. Они представляют собой механические взрыв­чатые смеси, основной частью которых является аммиачная (аммонийная) селитра; кроме селитры, в эти смеси входят взрывчатые или горючие добавки.

Аммиачная селитра представляет собой кристал­лическое вещество белого или бледно-желтого цвета. Она существует в нескольких кристалличе­ских формах, устойчивых лишь в определенных температурных пределах. Температурами перехода из одной кристаллической формы в другую, имеющими практическое значение, являются -16° и +32°. Переход одной кристаллической формы в другую происходит только после достаточно длительного влияния указан­ных температур (особенно при значительной влажности селитры) и сопровождается изменением объема; это изменение приводит к деформации прессованных изде­лий, содержащих аммиачную селитру.

Для того чтобы устранить указанное изменение объема изделий, применяют стабилизированную аммиач­ную селитру, которая получается путем совместной кристаллизации ее из раствора с хлористым калием (92% аммиачной селитры и 8% хлористого калия).

Аммиачная селитра сильно гигроскопична и очень хорошо растворяется в воде; пла­вится с частичным разложением при температуре 169,6°.

Аммиачная селитра активно взаимодейст­вует с окислами металлов, при этом образу­ются аммиак и вода. Аммиак может вступать в хими­ческое взаимодействие с некоторыми взрывчатыми веще­ствами (тротил, тетрил, пикриновая кислота), образуя чувствительные к внешним воздействиям соединения; наличие свободного аммиака способствует разви­тию процесса коррозии металлических из­делий.

Аммиачноселитренные ВВ в зависимости от ха­рактера примешиваемых к селитре добавок делятся на следующие виды:

Аммониты- ВВ, в состав которых, кроме аммиачной селитры, входят взрывчатые добавки (обыч­но тротил);

Динамоны-ВВ, состоящие из аммиачной се­литры и горючих добавок (сосновая кора, торф и т.п.);

Аммоналы- аммониты и динамоны с при­месью порошкообразного алюминия.

Из всех видов аммиачноселитренных ВВ на снаб­жении войск состоят только аммониты, содержащие 20-50% тротила (аммониты А-80 и А-50).

Физико-химические свойства аммонитов в основном определяются свойствами аммиачной селитры. Они также гигроскопичны и обладают способностью слеживаться, а изделия из них при длительном хране­нии вследствие многократной перекристаллизации сели­тры могут увеличиваться в объеме.

Увлажненные и слежавшиеся аммониты обладают пониженной восприимчивостью к детонации и при влажности 3% и выше могут давать отказы. Увлажненные аммониты перед употреблением должны просушиваться в тени, а слежавшиеся-предварительно размельчаться (разминаться руками или разбиваться при помощи де­ревянных или медных колотушек).

Отдельные виды аммонитов, изготовленные из аммиачной селитры, обработанной специальными веще­ствами, являются относительно водоустойчивыми. Они сохраняют взрывчатые свойства при пребывании в воде от 2 до 5 часов.

При зажигании аммониты (в том числе и сухие) за­гораются с трудом; при удалении источника огня горе­ние аммонита продолжается с шипением и копотью. К трению и удару аммониты несколько чувствительней тротила, но в обращении практически безопасны.

Основным видом аммонита, поступающего в войска, является аммонит А-80 в виде прессованных брикетов размерами 125õ125õ60 мм и весом 1,35 кг. Плотность брикетированного аммонита около 1,4; бри­кеты покрываются гидроизоляционной оболочкой, предо­храняющей их от действия влаги.

Брикеты аммонита могут находиться в воде в тече­ние нескольких часов, не теряя взрывчатых свойств и восприимчивости к детонации. Брикеты взрыва­ются промежуточным детонатором в виде шашки тротила весом 200-400 г или заряда другого бризантного ВВ. Поэтому брикеты не имеют запальных гнезд.

Несмотря на наличие гидроизоляционной оболочки, брикеты аммонитов необходимо тщательно обере­гать от сырости; целость гидроизоляционных обо­лочек должна периодически проверяться. Появление бе­лого налета селитры на оболочках брикетов не опасно.

Аммониты применяются главным образом при про­изводстве подрывных работ в грунтах, а также для сна­ряжения противотанковых мин и для устройства раз­личных фугасов.

Аммонитовые брикеты хранятся и перевозятся в де­ревянных ящиках, в каждый из кото­рых укладывается 24 брикета, связанных в пачки, обер­нутые бумагой (по 6 брикетов в пачке).

МЕТАТЕЛЬНЫЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (ПОРОХА)

Метательными ВВ (порохами) называются та­кие вещества, основной формой взрывчатого превраще­ния которых является горение. Пороха делятся на дым­ные и бездымные.

Дымный порох применяется для изготовления вышибных зарядов в осколочных (выпрыгивающих) и в сигнальных минах, а также для изготовления огнепроводного шнура и воспламенителей реактивных зарядов. Он представляет собой механическую смесь калиевой селитры (75%), древесного угля (15%) и серы (10%). В зависимости от величины зерен порох делится на мел­козернистый и крупнозернистый.

Дымный порох сильно гигроскопичен, под действием влаги отсыревает и при влажности свыше 2% стано­вится непригодным для применения. Высушенный (пос­ле отсыреваяия) порох имеет пониженные качества. При хранении и применении дымного пороха в.следствие вы­сокой способности его к воспламенению необходимо соблюдать особые меры предосторожности.

Бездымные пороха применяются для изготовления зарядов, используемых в различных реактивно-мета­тельных установках, а также в артиллерийских и стрел­ковых боеприпасах.

При отсутствии бризантных ВВ пороха могут приме­няться (в виде внутренних зарядов) и для производства подрывных работ. Детонация пороховых зарядов проте­кает нормально только в том случае, если инициирова­ние их осуществляется достаточным промежуточным детонатором, а промежутки между зернами пороха за­полнены жидкостью (вода, раствор поваренной или дру­гой соли).

Подводные взрывные работы.

Учебные вопросы:

1.Основные понятия о взрывах и взрывчатых веществах.

2. Подводные взрывы. Характеристики ВВ, используемые при проведении подводных

взрывных работ.

3. Способы взрывания и средства инициирования промышленных ВВ.

Основные виды подводных взрывных работ и особенности их проведения.

1. Подводные взрывные работы;

Подводные земляные работы;

Строительство подводных инженерных сооружений;

Ремонт подводных сооружений;

Укладка и ремонт подводных кабелей;

Прокладка и ремонт подводных трубопроводов;

Подводная резка и сварка металлов;

Литература:

1. К.А.Забела, Ю.Г.Кушнирюк. Пособие по подводно-техническим работам в строительстве/ К. Будивельник. – 1975 г. – стр. 26-25.

Основные понятия о взрывах и взрывчатых веществах.

Взрыв - это процесс очень быстрого превращения взрывчатого вещества в большое количество сильно сжатых и нагретых газов, которые, расширяясь, производят механическую работу (разрушение, перемещение, дробление, выбрасывание).

Взрывчатое вещество (ВВ) - химические соединения или смеси таких соединений, которые под воздействием определенных внешних воздействий способны к быстрому, саморазвивающемуся химическому превращению в большое количество газов.

По химическому процессу взрыв представляет горение ВВ, но отличается от простого горения быстротой процесса, происходящего в тысячные и десятитысячные доли секунды. Отсюда, по скорости превращения взрыв делят на два типа - горение и детонация.

При горении передача энергии от одного слоя вещества к другому происходит путем теплопроводности. Взрыв типа горения характерен для пороха. Процесс образования газов происходит достаточно медленно. Благодаря этому, при взрыве пороха в замкнутом пространстве (гильзе патрона, снаряда) происходит выбрасывание пули, снаряда из ствола, но не происходит разрушения гильзы, патронника оружия.

При детонации процесс передачи энергии обуславливается прохождением ударной волны по ВВ со сверхзвуковой скоростью (6-7 тыс. м. в секунду). В этом случае газы образуются очень быстро, давление возрастает мгновенно до очень больших величин. Проще говоря, у газов нет времени уходить по пути наименьшего сопротивления и они в стремлении расшириться, разрушают все на своем пути. Этот тип взрыва характерен для тротила, гексогена, аммонита и т.п. веществ.

  1. Механическое (удар, накол, трение)
  2. Тепловое (искра, пламя, нагревание)
  3. Химическое (хим. реакция взаимодействия какого-либо вещества с ВВ)
  4. Детонационное (взрыв рядом с ВВ другого ВВ)

В зависимости от типа взрыва и чувствительности к внешним воздействиям все ВВ делят на три основные группы:


  1. Инициирующие ВВ.
  2. Метательные ВВ.
  3. Бризантные ВВ.

Инициирующие ВВ. Обладают высокой чувствительностью к внешним воздействиям и их взрыв, (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью. Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль - детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Метательные ВВ. Метательными ВВ (порохами) называются такие вещества, основной формой взрывчатого превращения которых является горение. При взрыве пороха дробящее действие проявляется в незначительной степени по сравнению с действием в виде отбрасывания, разбрасывания окружающей среды, поэтому их после появления бризантных ВВ стали называть метательными ВВ. Пороха делятся на дымные и бездымные.

Бризантные ВВ. Бризантные ВВ свое название получили от французского briser, что значит дробить, разламывать. Бризантные ВВ в отличие от инициирующих не детонируют от таких простых начальных импульсов, как искра и луч пламени. Для возбуждения в них детонации необходим начальный импульс в виде взрыва небольшого количества инициирующего ВВ, а иногда и взрыва так называемого промежуточного детонатора из другого, более чувствительного вещества, взрывающегося, в свою очередь, от инициирующего ВВ. Бризантные ВВ - основные вещества, применяющиеся в огромных количествах для снаряжения боеприпасов (артиллерийских снарядов, минометных мин, авиационных бомб, морских и инженерных мин) и для производства взрывных работ как для военных.

Бризантные ВВ подразделяются на:

- ВВ повышенной мощности, обладающие повышенной скоростью детонации (7500 - 8500 м/с) и выделяющие большое количество тепла при взрыве (Тэн , Гексоген , Тетрил , Октоген, Нитроглицерин );

- ВВ нормальной мощности - обладают большой стойкостью, выдерживают длительное хранение и весьма мало чувствительны ко всякого рода внешним воздействиям, что делает обращение с ними практически безопасным (Тротил, Пикриновая кислота, Пластичное ВВ (пластит-4), Динамиты );

- ВВ пониженной мощности - обладают пониженной бризантностью вследствие существенно меньшего тепловыделения и меньшей скорости их детонация (не более 5000 м/с), поэтому они уступают бризантным ВВ нормальной мощности по бризантному действию и равноценны им по работоспособности (Аммиачная селитра, Аммониты, Динамоны, Аммоналы).

Все ВВ характеризуются рядом данных, в зависимости от величин которых решается вопрос о применении данного вещества для решения тех или иных задач. Наиболее существенные из них это:

  1. Чувствительность к внешним воздействиям
  2. Энергия (теплота) взрывчатого превращения
  3. Скорость детонации
  4. Бризантность
  5. Фугасность
  6. Химическая стойкость
  7. Продолжительность и условия работоспособного состояния
  8. Нормальное агрегатное состояние
  9. Плотность

Достаточно полно свойства ВВ можно описать, используя все девять характеристик. Однако для понимания в целом того, что обычно называют мощностью или силой можно ограничиться двумя характеристиками: «Бризантность» и «Фугасность».

Бризантность - это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика - скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ.

Фугасность - иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ.

Для взрывных работ в грунте более походят ВВ, обладающее наибольшей фугасностью прилюбой бризантности. Для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

Реальным способом сравнения мощностей различных ВВ является тротиловый эквивалент . Его суть заключается в том, что мощность тротила условно принята за единицу. Все остальные ВВ (в том числе и ядерное ВВ) сравниваются с тротилом. Оценка осуществляется из условия необходимого количества тротила для выполнения такой же взрывной работы, что и данным количеством этого ВВ. Например: 100гр. гексогена дают тот же результат, что и 125 гр. тротила, а 75 гр. тротила заменят 100гр. аммонита.

Работоспособность ВВ определяется условным количеством вещества, которое выбрасывается при взрыве. Определение работоспособности ВВ произведится по методу Трауцля (рис.1).

После взрыва заряда испытуемого ВВ просверленный в цилиндре канал превращается в полость. Эту полость заполняют водой и по ее количеству определяют объем полости. Работоспособность ВВ (Р ) характеризуется уширением полости за счет действия заряда ВВ, выраженным в см 3 .

P = V – (V 1 + V 2), см 3 ,

где V – объем полости после взрыва, см 3 ;

V 1 = 61.5см 3 первоначальный объем канала при диаметре канала 25 мм и глубине 125 мм;

V 2 = 28-30см 3 – уширение полости за счет взрыва капсюля-детонатора.

Определение скорости детонации ВВ. Может быть осуществлено по методу Дотриша (рис. 2).

После взрыва заряда измеряется расстояние m от края пластинки до точки М , в которой на пластинке остается след от встречи волн детонации, распространяющихся по обоим отрезкам детонирующего шнура. Скорость детонации ВВ определяется, исходя из равенства времени прихода детонационной волны в точку М через отрезок шнура L 1 (t 1), а с другой стороны – через заряд ВВ (на расстоянии S)и второй отрезок шнура L 2 (t 2):

поскольку t 1 = t 2 , то

отсюда , м/с.

Определение бризантности ВВ производится по методу Гесса (рис. 3) и характеризуется степенью обжатия свинцового столбика в мм.

Производятся измерения высоты столбика из рафинированного свинца до и после взрыва. Изменение высот столбика после взрыва является относительной характеристикой бризантности взрывчатого вещества.



Статьи по теме: