Парниковый эффект: причины и последствия. Глобальное потепление и парниковый эффект

В атмосферных слоях нашей планеты существует немало явлений, напрямую влияющих на климатические условия Земли. Таким явлением считается парниковый эффект, характеризующийся повышением температуры нижних атмосферных слоев земного шара в сравнении с той температурой теплового излучения нашей планеты, которое можно наблюдать из космоса.

Этот процесс считается одной из глобальных экологических проблем современности, так как благодаря нему, солнечное тепло задерживается в виде оранжерейных газов у поверхности Земли и создает предпосылки для глобального потепления.

Парниковые газы, влияющие на климат планеты

Принципы парникового эффекта впервые осветил Жозеф Фурье , рассматривая разные типы механизмов в формировании климата Земли. При этом рассматривались и факторы, оказывающие влияние на температурные условия климатических поясов и качественный теплоперенос, и факторы, которые влияют на состояние общего теплового баланса нашей планеты. Парниковый эффект обеспечивается разницей в прозрачности атмосфер в дальнем и видимом инфракрасных диапазонах. Тепловой баланс земного шара определяет климат и среднегодовые приповерхностные температуры.

Активное участие в этом процессе принимают так называемые парниковые газы, которые задерживают инфракрасные лучи, занимающиеся нагревом атмосферы Земли и ее поверхности. По степени влияния и воздействия на тепловой баланс нашей планеты основными принято считать следующие виды парниковых газов:

  • Водяной пар
  • Метан

Главным в этом списке является водяной пар (влажность воздуха тропосферы), который вносит в парниковый эффект земной атмосферы основной вклад. Также участвуют в действии фреоны и окись азота, но малая концентрация других газов не оказывает такого существенного влияния.

Принцип действия и причины парникового эффекта

Тепличный эффект, как еще называют парниковый, заключается в проникновении коротковолновых излучений Солнца к поверхности Земли, чему способствует углекислый газ. При этом тепловое излучение Земли (длинноволновое) задерживается. Вследствие этих упорядоченных действий осуществляется длительный нагрев нашей атмосферы.

Также суть парникового эффекта можно рассматривать как возможность повышения глобальной температуры Земли, которое может произойти в результате значительных изменений теплового баланса. Подобный процесс может обусловить постепенное накопление в атмосфере нашей планеты парниковых газов.

Самой явной причиной возникновения парникового эффекта называют попадание промышленных газов в атмосферу. Получается, что негативные результаты деятельности человека (лесные пожары, автомобильные выбросы, работа разных промышленных предприятий и сжигание топливных остатков) становятся прямыми причинами потепления климата. Выведение лесов – тоже одна из таких причин, так как именно леса являются самыми активными поглощателями углекислого газа.

Если нормированным для живых организмов, то экосистемам Земли и людям нужно будет пытаться приспособиться к измененным климатическим режимам. Однако наиболее разумным решением все же будет сокращение и последующее регулирование выбросов.

Протоколы киотских мудрецов. Миф о глобальном потеплении Поздышев Василий Анатольевич

Парниковый эффект и радиационный форсаж атмосферы

Атмосфера для нашей планеты - как теплое одеяло или, вернее, - как терморегулирующий скафандр. Без нее температура на Земле была бы в среднем на 30 (!) градусов ниже, то есть минус 15 градусов Цельсия, а также с огромным контрастом температуры дня и ночи: днем было бы очень жарко, а ночью - очень холодно.

Атмосфера Земли, состоящая на 78 % из азота, на 21 % из кислорода, содержит также и другие газы и примеси в незначительных пропорциях. В числе этих примесей находятся и уже ставшие «знаменитыми» парниковые газы: СО 2 (углекислый газ), СН 4 - метан, а также серные газы и водяной пар. В общей сложности все эти примеси представляют собой около 1 % земной атмосферы.

Чтобы понять, как парниковые газы и СО 2 влияют на температуру поверхности, нужно понять принципы радиационного (энергетического) баланса планеты и влияние атмосферы на него.

Итак, в 150 миллионах километров от Земли находится наша «печка» - Солнце, которая греет все вокруг с температурой около 6000 градусов Цельсия. Часть этого излучения доходит и до нашей планеты, далеко не все доходит до ее поверхности.

Атмосфера - это щит, который не пропускает часть солнечной энергии. Атмосферный щит отражает почти треть дошедшей до нас энергии обратно в космос. Если быть более точным - из дошедшей до Земли энергии в 342 ватта на квадратный метр атмосфера отражает 102 ватта и 240 ватт на квадратный метр проходят сквозь нее.

Но это еще не все, поскольку часть энергии, дошедшей до поверхности отражается обратно, еще раз проходит через атмосферу (опять с потерями), а часть отражается еще раз от атмосферы (на этот раз вниз) и возвращается к поверхности планеты. И все это много-много раз, примерно как шарик от пинг-понга, зажатый между двумя поверхностями. От этой «дополнительной» энергии, возвращенной к поверхности, температура планеты повышается.

Этот феномен - в упрощенном понимании «возврат атмосферой» к поверхности планеты части энергии, от нее отраженной, и называется парниковым эффектом.

Понятие это, на самом деле, неправильное, с научной точки зрения: этот эффект, на самом деле, не имеет ничего общего со знакомыми нам по огурцам-помидорам теплицам и парникам, где повышение температуры происходит по причине отсутствия конвекции (обмена теплого воздуха внутри теплицы и холодного снаружи). Но уж как назвали - пусть так и будет.

Понятие «парниковый эффект» было так сильно медиатизировано средствами массовой информации и политиками, что теперь поздно менять его на более правильное с точки зрения физики: радиационный форсаж.

В планетарном парниковом эффекте (феномене радиационного форсажа) основную роль играет способность земной поверхности отражать солнечные лучи и способность атмосферного экрана их пропускать (туда и обратно).

То есть если бы парникового эффекта не было, то земная поверхность, получив пропущенные атмосферой 240 ватт на квадратный метр, отражала бы их все обратно, но это не так.

Здесь самое место вспомнить, что такое альбедо. Альбедо - это и есть способность поверхности отражать часть солнечных лучей. Сточки зрения энергетического баланса - это та часть энергии, которая не используется для нагрева планеты Солнцем. Солнечное излучение отражается по-разному атмосферой, сушей, лесами и океаном. Чем альбедо выше, тем светлее нам кажется поверхность. Черная поверхность поглощает все лучи, падающие на нее, то есть альбедо равно нулю.

Альбедо Земли складывается из отражательной способности составляющих ее поверхность элементов. Все они, например из космоса, видятся более или менее светлыми. Те, что более светлые, имеют более высокое альбедо, более темные - более низкое. Например:

Свежий снег - 95%

Облака типа Cumulo-nimbus - 90%

Старый снег и ледники - 60%

Облака типа cirrus - 35%

Песок, пустыни - 30%

Растительность - 10%

Океан, реки, озера, вода - 7%

Таким образом, для всей земной поверхности среднее альбедо сегодня - около 30 %, что говорит о том, что Земля оставляет у себя 70 % солнечного излучения.

Тут надо сделать небольшое, но очень важное уточнение: с точки зрения энергетики, неправильно брать в расчет только видимую часть спектра. Если Солнце с температурой поверхности в 6000 градусов Цельсия поливает нас ультрафиолетом и лучами из верхней части спектра (солнце - желтая звезда), то отраженное ему обратно Землей излучение на 60 % состоит из видимого излучения и 40 % (!) из инфракрасного, которое и является основным «нагревателем» нашего планетарного «парника». Также, кстати, важно понимать, что альбедо растительности (листьев и травы) - всего 10 % в видимом спектре (они темные), но достигает 60 % в инфракрасном. Тут, кстати, наблюдается еще один забавный и немного провокационный парадокс: чем больше растительности - тем больше планета отражает инфракрасного излучения… Леса вырубить - парниковый эффект может стать и меньше… Все гораздо сложнее, чем представляется.

Но вернемся к энергетическому балансу земной поверхности. Получив 240 ватт энергии на квадратный метр, Земля поглощает две трети и треть отражает. То есть 160 ватт «нагревает» каждый квадратный метр Земли, и 80 ватт уходит «в небо». Но, чтобы сохранить энергетический баланс, Земля должна «отдавать» космосу те же 240 ватт. Земля - не холодная планета, у нее горячее ядро, наполненное магмой. Поэтому Земля излучает не только отраженную энергию Солнца, но и имеет свое инфракрасное (мы это помним) излучение. Это излучение на поверхности планеты сегодня равно 300 ваттам на квадратный метр. То есть поверхность Земли получает 240 ватт, а отдает больше - 380 ватт. Из этих 380 ватт через атмосферу проходит менее половины - около 150. Все остальное - 130 ватт возвращается обратно к земной поверхности и нагревает ее. Иными словами - Земля сама себя греет. Эта «дополнительная энергия» и есть проявление радиационного форсажа, или парникового эффекта.

Как вы видите, сам по себе парниковый эффект действительно оказывает существенное влияние на энергетический баланс планеты: оставленная им у поверхности планеты энергия (130 ватт на квадратный метр) почти сравнима с той частью энергии, которая доходит до нее через атмосферу от Солнца (160 ватт на квадратный метр).

Но данный факт сам по себе еще не говорит, что это вызывает потепление, как и не говорит о том, что именно углекислый газ - основной фактор парникового эффекта.

Физика парникового эффекта намного сложнее. Частота волн полученного и выпущенного излучения играет в нем важную роль. Вспомним тот факт, что Солнце излучает всю гамму лучей и много ультрафиолета, а основное излучение Земли - инфракрасное. Земля - темное небесное тело.

Так вот, разные молекулы атмосферы пропускают и отражают волны разной длины. Вода поглощает волны одной частоты - именно на эту частоту (2450 мегагерц) выставлены все, произведенные в Китае, микроволновки на всех кухнях всех домохозяек в мире. Но молекула азота поглощает волны на другой частоте, молекулы озона - на третьей, молекула углекислого газа СО 2 - на четвертой, и так далее.

Основной диапазон волн, которые атмосфера пропускает, называется «окном». Главное «окно» земной атмосферы (излучение Земли) находится в диапазоне 9 и 11 микрометров. Именно в этом диапазоне и идет основное излучение Земли.

Как это ни парадоксально, но очевидно, что диапазон основного излучения Земли НЕ совпадает с длинной волн, которые поглощает СО 2 !

Поэтому, очевидно, что основное излучение Земли - инфракрасное - СО 2 НЕ ПОГЛОЩАЕТ, а пропускает. Значит - влияние СО 2 на радиационный форсаж (парниковый эффект) не должно быть существенным. Значит, что-то другое в атмосфере поглощает инфракрасное излучение и оставляет эту энергию у поверхности планеты, но не СО 2 .

То есть мы понимаем, что радиационный (и соответственно температурный) режим планеты очень сильно зависит от альбедо и от состава атмосферы (если в ней содержатся газы, молекулы которых поглощают энергию на тех же волнах, что сама планета излучает). От чего альбедо меняется? Ну во-первых, очевидны сезонные изменения в каждом полушарии. Летом растительность, зимой - снег и лед. Отмечу лишний раз, что сезонные вариации альбедо более заметны в Северном полушарии (там больше суши и резкого континентального климата). Долгосрочные и несезонные вариации альбедо происходят по следующим причинам: связанным с человеческой деятельностью - урбанизация, замещение лесов сельхозкультурами, таяние льдов, и природным - изменение облачного слоя планеты.

Например, вырубка лесов, драматическое с точки зрения экосистемы явление, на вариацию альбедо оказывает очень малое влияние. По рапортам ООН ежегодно Земля теряет до 150 000 квадратных километров лесов. То есть - за 25 лет поверхность теряет около 3,5 миллионов квадратных километров лесной поверхности. Но с точки зрения энергетического баланса планеты это значит, что 0,5 % Земной поверхности изменит свое альбедо с 10 % до 20 % или до 30 % (в зависимости от того - что будет на месте леса). Это будет соответствовать увеличению энергетического баланса примерно на 0,02 ватта на квадратный метр за четверть века. По подсчетам IPCC, все изменение отражающей поверхности земной поверхности человеком за XX век (меньше лесов, больше полей, городов и дорог) изменило энергетический баланс Земли не более, чем на 0,2 ватта на квадратный метр. Мы помним, что в среднем Земля получает 240 ватт энергии на квадратный метр поверхности, то есть человек в худшем случае изменил альбедо поверхности планеты на 0,08 % (восемь сотых процента), что чрезвычайно незначительно.

Напротив, облака являются очень существенным фактором, влияющим на альбедо и, соответственно, на энергетический баланс планеты. Облачный покров отвечает за две трети (!) отраженной в космос солнечной энергии. Именно из-за облаков альбедо Земли достигает 30 %. Однако привычные нам облака - не такой простой феномен. Во-первых, они состоят из мельчайших частиц воды и льда разного размера, в разных пропорциях и на разной высоте. Все это приводит к вариации альбедо. Именно непредсказуемость образования облаков и отсутствие исторических данных по величине и толщине облачного покрова планеты являются основной проблемой климатического моделирования.

Что влияет на величину и на толщину облачного покрова? Пока выявлено 3 основных элемента, влияющие на конденсацию воды в атмосфере: само количество паров воды в атмосфере (ее влажность) и конденсирующие факторы внешнего (космическое излучение) и наземного характера (аэрозоли - естественные и искусственные).

Становится понятно, что:

Во-первых, изменение отражающей поверхности планеты (больше или меньше снега, воды, пустыни, растительности) сильно влияет на ее энергетический баланс. На самом деле, снижение альбедо всего на 1 % изменяет энергетический баланс Земли на 4 ватта на квадратный метр. Это то же изменение, которое получится, если концентрация парниковых газов в земной атмосфере увеличится в два раза;

Во-вторых, наиболее важным фактором земного альбедо являются… облака. Наука констатирует, что облачность в земной атмосфере меняется, но отслеживать это стало возможно только после открытия космической эры, и законы образования облаков разного типа в атмосфере пока не понятны ученым.

Сейчас, в начале XXI века, среднее «покрытие» облаками земной поверхности составляет примерно 50 %. Сколько было 100 или 50 лет назад - мы не знаем.

То есть мы понимаем, что заявления о существенном влиянии концентрации углекислого газа в атмосфере на радиационный баланс нашей планеты есть очень сильное и далекое от научного подхода упрощение.

Углекислый газ, содержащийся в атмосфере в промилях (тысячных долях - сегодня это 0,038 %) и поглощающий излучение на частотах, отличных от основных частот инфракрасного излучения Земли, вряд ли является основным фактором изменения температуры. По крайней мере - далеко не единственным.

Кроме углекислого газа, известного теперь всем из-за паранойи вокруг него, есть много других «атмосферных» факторов, вызывающих парниковый эффект, например - содержание воды в атмосфере, облака (и их форма).

Вода в атмосфере и форма облаков, ею образованных, - наиболее существенный фактор парникового эффекта, об этом почему-то никто не говорит…

Наверное, потому что с облаками все гораздо сложнее, чем с СО 2: не измерить их, не поймать и, самое главное, продать трудновато. Да и призывать к борьбе за снижение или увеличение количества облаков определенного типа - прямой путь не в парламент, и не в президенты, а в совсем другое, менее престижное, заведение.

Есть также другие «парниковые газы» (про метан я уже упоминал), есть вулканическая пыль, в атмосфере есть много чего, что отражает солничную радиацию. Просто наука не располагает долгосрочными статистическими данными о них, поэтому основной параметр, изпользуемый в климатических моделях глобального потепления - СО 2 . Потому столько и разговоров о нем.

А ведь кроме состава атмосферы и создаваемого им парникового эффекта есть и другие, неатмосферные факторы, влияющие на температурный режим Земли и определяющие ее температурные циклы.

Теперь самое время рассмотреть весь механизм формирования климата планеты и заодно ответить на второй политически некорректный вопрос: а имеет ли место быть то самое глобальное потепление, которым нас всех пугают?

Из книги Путь Черепах. Из дилетантов в легендарные трейдеры автора Куртис Фейс

Эффект трейдера В физике есть понятие эффект наблюдателя – суть его заключается в том, что измерение явления иногда влияет на само явление; обозреватель нарушает чистоту эксперимента самим фактом обозревания. Нечто подобное порой происходит и в трейдинге – проводимая

Из книги Стратегическое управление автора Ансофф Игорь

6.1.14. Создание атмосферы поддержки Используя схему вероятного сопротивления, можно принять меры по устранению излишнего сопротивления. Для этого исключаются неверное понимание и преувеличение характера изменений. работникам фирмы разъясняется необходимость,

Из книги Организуй себя автора Каунт Джон

Добейтесь создания благоприятной атмосферы На эффективность чтения будут влиять как ваше окружение, так и ваши ощущения. Добейтесь, чтобы освещение было соответствующим образом отрегулировано, а факторы, отвлекающие ваше внимание, сведены к минимуму. Особенно

Из книги Микроэкономика: конспект лекций автора Тюрина Анна

5. Эффект дохода и эффект замещения Закон спроса характеризуется тем, что объемы покупок и благ, предназначенных для потребления, связаны с ценой обратной зависимостью. Сама структура спроса непосредственно зависит от действия рыночного механизма и условий

Из книги Протоколы киотских мудрецов. Миф о глобальном потеплении автора Поздышев Василий Анатольевич

Пролог СВАНТЕ АРРЕНИУС И ПАРНИКОВЫЙ ЭФФЕКТ Как появилась теория глобального потепления?В 1824 году французский физик Жозеф Фурье предполагает, что земная атмосфера может увеличивать температуру поверхности. Он же впервые использовал словосочетание «парниковый эффект»

Из книги Микроэкономика автора Вечканова Галина Ростиславовна

Вопрос 10 Реакция потребителя на изменение цены. Эффект замены и эффект дохода. ОТВЕТИЗМЕНЕНИЕ ЦЕНЫ на одно благо при фиксированном доходе и неизменных ценах на другие блага вызывает смещение бюджетной линии в точку, более удаленную или более близкую к началу

Из книги Биржевая игра [Сделай миллионы, играя числами] автора Джонс Райан

Из книги Карта и территория. Риск, человеческая природа и проблемы прогнозирования автора Гринспен Алан

Эффект маржи Управление капиталом показывает фантастические результаты, поскольку может обеспечивать рост прибыли в геометрической прогрессии. В значительной степени именно невысокие требования по марже на товарных и фьючерсных рынках делают возможным

Из книги Визуализируй это! Как использовать графику, стикеры и интеллект-карты для командной работы автора Сиббет Дэвид

Из книги Покупатель на крючке. Руководство по созданию продуктов, формирующих привычки автора Хувер Райан

II. Вовлечение группы в работу и создание атмосферы взаимопонимания В части I рассказывалось о возможностях, которые предоставляет метод визуализации. Здесь речь пойдет о вовлечении группы в работу, о ключевых аспектах проведения плодотворных рабочих встреч. Если между

Из книги Практика управления человеческими ресурсами автора Армстронг Майкл

Создание атмосферы взаимопонимания: сначала послушайте, будет еще время высказаться Коммерсанты знают, что взаимопонимание устанавливается, если вы сумели показать, что вам интересно мнение ваших собеседников, и если, предлагая свой товар, вы не вели себя с позиции

Из книги Глобальный кризис. За гранью очевидного автора Долан Саймон

Эффект дефицита В 1975 году исследователи Уорчел, Ли и Эйдуол решили выяснить, как люди оценят печенье, которое они положили в две одинаковые стеклянные банки{63}. Количество печенья разнилось, в одной – десять штук, в другой – всего две. Какое из них показалось людям

Из книги Надежная база: лидерство для руководителей высшего звена автора Колризер Джордж

ПОДДЕРЖАНИЕ АТМОСФЕРЫ ПРИВЕРЖЕННОСТИ И ДОВЕРИЯ Достижение приверженности – это попытка добиться от людей, чтобы они отождествляли свои цели и ценности с целями и ценностями организации, в том числе с целью развития и распространения знаний. Приверженность можно

Из книги автора

УЛУЧШЕНИЕ АТМОСФЕРЫ Улучшить атмосферу можно, разрабатывая справедливую политику отношений с работниками и процедуры с их последовательной реализацией. Линейных менеджеров и руководителей групп, которые несут большую ответственность за поддержание повседневных

Из книги автора

Эффект джокера Кроме известных проблем и ожидаемых решений, действует феномен, наподобие эффекта «черного лебедя», с низкой вероятностью, но высоким воздействием – эффект «джокера». Эти события могут произойти в любое время в зависимости от случая или удачи, немного

Из книги автора

Создание атмосферы доверия посредством эффективных уз Институт развития доверия Рейнов проводил исследования, свидетельствующие о том, что современная деловая среда испытывает нехватку доверия, однако оно ценится чрезвычайно высоко. Четверо из пяти опрошенных лишь

Парниковый эффект – способность (газов в атмосфере) в большей степени пропускать к поверхности Земли солнечную радиацию по сравнению с тепловым излучением, испускаемым нагретой Солнцем Землей. В результате температура поверхности Земли и приземного слоя воздуха выше, чем она была бы при отсутствии парникового эффекта. Средняя температура поверхности Земли равна плюс 15°С, а без парникового эффекта она была бы минус 18°! Парниковый эффект – один из механизмов жизнеобеспечения на Земле.

Деятельность человека за последние 200 лет, и в особенности после 1950 г., привели к продолжающемуся и в настоящее время повышению концентрации в атмосфере газов, обладающих парниковым эффектом. Неизбежно последовавшая за этим реакция атмосферы заключается в антропогенном усилении естественного парникового эффекта. Суммарное антропогенное усиление парникового эффекта +2,45 ватт/м2 (Международный Комитет по изменению климата IPCC).

Парниковый эффект каждого из таких газов зависит от трех основных факторов:

а) ожидаемого парникового эффекта на протяжении ближайших десятилетий или веков (например, 20, 100 или 500 лет), вызываемого единичным объемом газа, уже поступившим в атмосферу, по сравнению с эффектом от углекислого газа, принимаемым за единицу;

б) типичной продолжительности его пребывания в атмосфере, и

в) объема эмиссии газа.

Комбинация первых двух факторов носит название “Относительный парниковый потенциал” и выражается в единицах от потенциала СО2.

Газы с парниковым эффектом:

Роль водяного пара , содержащегося в атмосфере, в общемировом парниковом эффекте велика, но трудно определима однозначно. При потеплении климата содержание водяного пара в атмосфере будет увеличиваться, тем самым усиливая парниковый эффект.

Диоксид углерода, или углекислый газ (СО2) (64% в парниковом эффекте), отличается, по

сравнению с другими парниковыми газами, относительно низким потенциалом парникового эффекта, но довольно значительной продолжительностью существования в атмосфере – 50–200 лет и сравнительно высокой концентрацией. Концентрация углекислого газа в атмосфере в период с 1000 по 1800 гг. составляла 270–290 частей на миллион по объему (ppmv), а к 1994 г. она достигла 358 ppmv и продолжает расти. Может достигнуть 500 ppmv к концу XXI века. Стабилизация концентрации может быть достигнута посредством значительного сокращения объема выбросов. Основной источник поступления углекислого газа в атмосферу – сжигание горючих ископаемых (угля, нефти, газа) для производства энергии.

Источники СО2

(1) Поступление в атмосферу вследствие сжигания горючих ископаемых и производства цемента 5,5±0,5


(2) Поступление в атмосферу вследствие трансформации ландшафтов в тропической и экваториальной зонах, деградация почв 1,6±1,0

Поглощение различными резервуарами

(3) Аккумуляция в атмосфере 3,3±0,2

(4) Аккумуляция Мировым океаном 2,0±0,8

(5) Аккумуляция в биомассе Северного полушария 0,5±0,5

(6) Остаточный член баланса , объясняемый поглощением СО2 экосистемами суши (фертилизация и др.) = (1+2)-(3+4+5)=1,3±1,5

Увеличение концентрации диоксида углерода в атмосфере должно стимулировать процесс фотосинтеза. Это так называемая фертилизация, благодаря которой, по некоторым оценкам, продукция органического вещества может возрасти на 20–40 % при удвоенной по сравнению с современной концентрацией углекислого газа.

Метан (СН4) - 19 % от общей его величины парниковых газов (на 1995 г.). Метан образуется в анаэробных условиях, таких как естественные болота разного типа, толща сезонной и вечной мерзлоты, рисовые плантации, свалки, а также в результате жизнедеятельности жвачных животных и термитов. Оценки показывают, что около 20% суммарной эмиссии метана связаны с технологией использования горючих ископаемых (сжигание топлива, эмиссии из угольных шахт, добыча и распределение природного

газа, переработка нефти). Всего антропогенная деятельность обеспечивает 60–80 % суммарной эмиссии метана в атмосферу. В атмосфере метан неустойчив. Он удаляется из нее вследствие взаимодействия с ионом гидроксила (ОН) в тропосфере. Несмотря на этот процесс, концентрация метана в атмосфере увеличилась примерно вдвое по сравнению с доиндустриальным временем и продолжает расти со скоростью около 0,8 % в год.

Рост температуры и увеличение увлажненности (то есть продолжительности нахождения территории в анаэробных условиях) еще более усиливают эмиссию метана. Это характер-

ный пример положительной обратной связи. Наоборот, снижение уровня грунтовых вод из-за пониженной увлажненности должно приводить к уменьшению эмиссии метана (отрицательная обратная связь).

Текущая роль оксида азота (N2O) в суммарном парниковом эффекте составляет всего около 6%. Концентрация оксида азота в атмосфере также увеличивается. Предполагается, что его антропогенные источники приблизительно вдвое меньше естественных. Источниками антропогенного оксида азота является сельское хозяйство (в особенности пастбища в тропиках), сжигание биомассы и промышленность, производящая азотсодержащие вещества. Его относительный парниковый потенциал (в 290 раз

выше потенциала углекислого газа) и типичная продолжительность существования в атмосфере (120 лет) значительны, компенсируя его невысокую концентрацию.

Хлорфторуглероды (ХФУ) – это вещества, синтезируемые человеком, и содержащие хлор, фтор и бром. Они обладают очень сильным относительным парниковым потенциалом и значительной продолжительностью жизни в атмосфере. Их итоговая роль в парниковом эффекте составляет 7%. Производство хлорфторуглеродов в мире в настоящее время контролируется международными соглашениями по защите озонового слоя, включающими и положение о постепенном снижении производства этих веществ, замене их на менее озонразрушающие с последующим полным его прекращением. В результате концентрация ХФУ в атмосфере начала сокращаться.

Озон (О3) – важный парниковый газ, находящийся как в стратосфере, так и в тропосфере. Он влияет как на коротковолновую, так и на длинноволновую радиацию, и потому итоговые направление и величина его вклада в радиационный баланс в сильной степени зависят от вертикального распределения содержания озона, в особенности на уровне тропопаузы. Оценки указывают на положительную результирующую +0,4 ватт/м2.

Если не остановить его нарастание, равновесие на Земле может нарушиться. Изменится климат, придёт голод и болезни. Учёные разрабатывают разные меры борьбы с проблемой, которая должна стать глобальной.

Суть

Что такое парниковый эффект? Так называют повышение температуры поверхности планеты благодаря тому, что газы в атмосфере имеют свойство удерживать тепло. Земля нагревается излучением Солнца. Видимые короткие волны от источника света беспрепятственно проникают к поверхности нашей планеты. Нагреваясь, Земля начинает излучать длинные тепловые волны. Частично они проникают сквозь слои атмосферы и «уходят» в космос. снижают пропускную способность, отражают длинные волны. Тепло остаётся у поверхности Земли. Чем больше концентрация газов, тем выше парниковый эффект.

Впервые явление было описано Жозефом Фурье ещё в начале 19 века. Он предположил, что процессы, происходящие в земной атмосфере, аналогичны тому, что существует под стеклом.

Парниковые газы – это пар (от воды), диоксид углерода (углекислота), метан, озон. Основное участие в формировании парникового эффекта принимает первый (до 72%). Следующий по значимости – углекислый газ (9-26%), доля метана и озона 4-9 и 3-7% соответственно.

В последнее время часто можно услышать про парниковый эффект как серьёзную экологическую проблему . Но у этого явления есть и положительная сторона. Благодаря тому, что парниковый эффект существует, средняя температура нашей планеты примерно 15 градусов выше нуля. Без него жизнь на Земле была бы невозможна. Температура могла быть только «минус» 18.

Причина появления эффекта – активная деятельность множества вулканов на планете миллионы лет назад. При этом в атмосфере значительно повысилось содержание пара воды, углекислого газа. Концентрация последнего достигла такого значения, что возник сверхсильный парниковый эффект. Вследствие этого практически вскипела вода Мирового океана, настолько высока стала её температура.

Появление растительности повсеместно на поверхности Земли вызвало достаточно быстрое поглощение диоксида углерода. Накопление тепла снизилось. Установилось равновесие. Среднегодовая температура на поверхности планеты оказалась на уровне, близком к настоящему.

Причины

Усилению явления способствуют:

  • Развитие промышленности – главная причина того, что углекислота и другие газы, усиливающие парниковый эффект, активно выбрасываются и накапливаются в атмосфере. Результат деятельности человека на Земле – рост среднегодовой температуры. За столетие она поднялась на 0,74 градуса. Учёные прогнозируют, что в дальнейшем этот рост может составить 0,2 градуса за каждые 10 лет. То есть, интенсивность потепления увеличивается.
  • – причина роста концентрации СО2 в атмосфере. Этот газ поглощается растительностью. Массовое освоение новых земель, сопряжённое с вырубкой лесов, ускоряет темп накопления углекислоты, и одновременно изменяет условия обитания животных, растений, ведёт к вымиранию их видов.
  • Сжигание топлива (твёрдого и нефти), отходов ведёт к выбросу углекислоты. Отопление, производство электроэнергии, транспорт – основные источники этого газа.
  • Рост энергопотребления – признак и условие технического прогресса. Численность населения планеты увеличивается примерно на 2% в год. Рост энергопотребления – 5%. Интенсивность ежегодно увеличивается, человечеству нужно всё больше энергии.
  • Рост числа свалок ведёт к увеличению концентрации метана. Другой источник газа – деятельность животноводческих комплексов.

Угрозы

Последствия парникового эффекта могут быть губительны для человека:

  • Тают полярные льды, а это причина повышению уровня моря. В результате прибрежные плодородные земли оказываются под водой. Если затопление будет происходить высокими темпами, возникнет серьёзная угроза сельскому хозяйству. Гибнут посевы, сокращается площадь пастбищ, исчезают источники пресной воды. Прежде всего, пострадают малообеспеченные слои населения, жизнь которых зависит от урожая, роста домашних животных.
  • Многие прибрежные города, в том числе и высокоразвитые, в будущем могут оказаться под водой. Например, Нью-Йорк, Санкт-Петербург. Или целые страны. Например, Голландия. Такие явления вызовут необходимость массового перемещения поселений людей. Учёные предполагают, что через 15 лет уровень океана может подняться на 0,1-0,3 метра, а к концу 21 века – на 0,3-1 метр. Чтобы под водой оказались вышеназванные города, уровень должен подняться примерно на 5 метров.
  • Рост температуры воздуха ведёт к тому, что внутри континентов сокращается период лежания снега. Таять он начинает раньше, как и быстрее заканчивается сезон дождей. В результате почвы оказываются пересушенными, непригодными для выращивания сельскохозяйственных культур. Недостаток влаги – причина опустынивания земель. Специалисты утверждают, что рост средней температуры на 1 градус через 10 лет приведёт к сокращению лесных территорий на 100-200 миллионов гектаров. Эти земли станут степями.
  • Океан покрывает 71% площади поверхности нашей планеты. С ростом температуры воздуха нагревается и вода. Значительно увеличивается испарение. А это одна из основных причин усиления парникового эффекта.
  • При повышении уровня воды в мировом океане, температуры появляется угроза биоразнообразию, может исчезнуть множество видов живой природы. Причина – изменения в среде их обитания. Не каждый вид может успешно приспособиться новым условиям. Следствие исчезновения некоторых растений, животных, птиц, других живых существ – нарушение цепей питания, равновесия экосистем.
  • Рост уровня воды вызывает изменения климата. Сдвигаются границы сезонов, увеличивается количество и интенсивность штормов, ураганов, осадков. Стабильность климата – основное условие существования на Земле жизни. Остановить парниковый эффект – значит сохранить человеческую цивилизацию на планете.
  • Высокая температура воздуха может негативно сказаться на здоровье людей. При таких условиях обостряются сердечно-сосудистые заболевания, страдают органы дыхания. Тепловые аномалии приводят к увеличению числа травм, некоторых психологических расстройств. Рост температуры влечёт за собой более быстрое распространение многих опасных заболеваний, например, малярии, энцефалита.

Что делать?

Сегодня проблема парникового эффекта – глобальный вопрос экологии. Специалисты считают, что решить проблему поможет повсеместное принятие следующих мер:

  • Изменения в использовании источников энергии. Сокращение доли и количества ископаемых (содержащих углерод торфа, угля), нефти. Переход на природный газ значительно уменьшит выделение СО2.Увеличение доли альтернативных источников (солнца, ветра, воды) снизит выбросы, ведь эти способы позволяют получать энергию без вреда для экологии. При их использовании газы не выделяются.
  • Изменение политики в сфере энергетики. Увеличение коэффициента полезного действия на электростанциях. Снижение энергоёмкости выпускаемых продуктов на предприятиях.
  • Внедрение технологий энергосбережения. Даже обычное утепление фасадов домов, оконных проёмов, теплоцентралей даёт существенный результат – экономию топлива, а, значит, меньший объём выбросов. Решение вопроса на уровне предприятий, производств, государств влечёт за собой глобальное улучшение ситуации. Каждый человек может внести свой вклад в решение проблемы: экономия электроэнергии, правильная утилизация мусора, утепление собственного жилища.
  • Развитие технологий, направленных на получение продуктов новыми, экологически чистыми способами.
  • Использование вторичных ресурсов – одна из мер по сокращению отходов, числа и объёма свалок.
  • Восстановление лесов, борьба с пожарами в них, увеличение площади как способ уменьшения концентрации углекислоты в атмосфере.

Борьба с выбросом парниковых газов сегодня ведётся на международном уровне. Проводятся мировые саммиты, посвящённые этой проблеме, создаются документы, направленные на организацию глобального решения вопроса. Многие учёные мира занимаются поиском способов уменьшения парникового эффекта, сохранения баланса и жизни на Земле.

Проблема парникового эффекта особенно актуальна в нашем веке, когда мы уничтожаем леса, чтобы построить еще один промышленный завод, а многие из нас не представляют жизни без машины. Мы, как страусы, прячем голову в песок, не замечая вреда от нашей деятельности. Тем временем парниковый эффект усиливается и приводит к глобальным катастрофам.

Явление парникового эффекта существовало с момента появления атмосферы, хотя и не было столь заметным. Тем не менее изучение его началось задолго до активного использования автомобилей и .

Краткое определение

Парниковый эффект – повышение температуры нижних слоев атмосферы планеты вследствие накопления парниковых газов. Механизм его таков: солнечные лучи проникают в атмосферу, нагревают поверхность планеты.

Тепловое излучение, которое исходит от поверхности, должно вернуться в космос, но нижний слой атмосферы слишком плотный для их проникновения. Причина этому – парниковые газы. Тепловые лучи задерживаются в атмосфере, повышают ее температуру.

История исследований парникового эффекта

Впервые о явлении заговорили в 1827 году. Тогда появилась статья Жана Батиста Жозефа Фурье «Записка о температурах земного шара и других планет», где он подробно изложил свои представления о механизме парникового эффекта и причины его появления на Земле. В своих исследованиях Фурье опирался не только на собственные эксперименты, но и на суждения М. Де Соссюра. Последний проводил опыты с зачерненным изнутри стеклянным сосудом, закрытым и поставленным под солнечный свет. Температура внутри сосуда была гораздо выше, чем снаружи. Это объясняется таким фактором: тепловое излучение не может пройти сквозь затемненное стекло, а значит, остается внутри емкости. При этом солнечный свет смело проникает через стенки, так как снаружи сосуд остается прозрачным.

Несколько формул

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом R и сферическим альбедо A, равна:

E = πR2 { E_0 over R2} (1 – A) ,

где E_0 – солнечная постоянная, и r – расстояние до Солнца.

В соответствии с законом Стефана–Больцмана равновесное тепловое излучение L планеты с радиусом R, то есть площадью излучающей поверхности 4πR2:

L=4πR2 σТЕ^4 ,

где ТЕ – эффективная температура планеты.

Причины возникновения

Природа явления объясняется различной прозрачностью атмосферы для излучения из космоса и от поверхности планеты. Для солнечных лучей атмосфера планеты прозрачна, как стекло, и поэтому они легко проходят сквозь нее. А для теплового излучения нижние слои атмосферы «непробиваемы», слишком плотные для прохождения. Потому-то часть теплового излучения остается в атмосфере, постепенно опускаясь к самым нижним ее слоям. При этом количество парниковых газов, уплотняющих атмосферу, растет.

Еще в школе нас учили, что основная причина парникового эффекта – деятельность человека. Эволюция привела нас к промышленности, мы сжигаем тонны угля, нефти и газа, получаем топливо, Следствие этого – выделение парниковых газов и веществ в атмосферу. Среди них – водяной пар, метан, углекислый газ, оксид азота. Почему они так названы, понятно. Поверхность планеты нагревается солнечными лучами, но обязательно «отдает» часть тепла обратно. Тепловое излучение, которое исходит от поверхности Земли, называется инфракрасным.

Парниковые газы в нижней части атмосферы не дают тепловым лучам вернуться в космос, задерживают их. Вследствие этого средняя температура планеты увеличивается, и это ведет к опасным последствиям.

Неужели ничто не может урегулировать количество парниковых газов в атмосфере? Конечно, может. С этим заданием отлично справляется кислород. Но вот беда – количество населения планеты неумолимо растет, а значит, поглощается все больше кислорода. Единственное наше спасение – растительность, особенно леса. Они поглощают избыточный углекислый газ, выделяют гораздо большее количество кислорода, чем потребляют люди.

Парниковый эффект и климат Земли

Когда мы говорим о последствиях парникового эффекта, мы понимаем влияние его на климат Земли. В первую очередь – это глобальное потепление. Многие отождествляют понятия «парниковый эффект» и «глобальное потепление», но они не равны, а взаимосвязаны: первое – причина второго.

Глобальное потепление напрямую связано с Мировым океаном. Вот пример двух причинно-следственных связей.

  1. Средняя температура планеты растет, жидкость начинает испаряться. Это касается и Мирового океана: некоторые ученые боятся, что через пару сотен лет он начнет «высыхать».
  2. При этом из-за высокой температуры ледники и морские льды начнут активно таять уже в ближайшее время. Это приведет к неизбежному росту уровня Мирового океана.

Мы уже наблюдаем регулярные потопы в прибрежных районах, но если уровень Мирового океана существенно возрастет, затоплены будут все приближенные участки суши, погибнет урожай.

Влияние на жизнь людей

Не стоит забывать, что повышение средней температуры Земли отразится и на нашей жизни. Последствия могут быть очень серьёзными. Многие территории нашей планеты, и так склонные к засухе, станут абсолютно не жизнеспособными, люди начнут массово мигрировать в другие регионы. Это неизбежно приведет к социально-экономическим проблемам, к началу третьей и четвертой мировых войн. Недостаток продовольствия, уничтожение урожаев – вот что ждет нас в ближайшее столетие.

Но обязательно ли ждет? Или все-таки можно что-то изменить? Может ли человечество снизить вред от парникового эффекта?

Действия, способные спасти Землю

На сегодняшний день известны все вредные факторы, которые приводят к накоплению парниковых газов, и мы знаем, что нужно делать, чтобы это остановить. Не стоит думать, что один человек ничего не изменит. Конечно, эффекта может добиться только все человечество, но кто знает – может, еще сотня людей в этот момент читает подобную статью?

Сохранение лесов

Остановка вырубки лесов. Растения – наше спасение! Кроме того, нужно не только сохранять существующие леса, но и активно высаживать новые.

Понять эту проблему должен каждый человек.

Фотосинтез настолько силен, что способен обеспечить нас огромным количеством кислорода. Его хватит для нормальной жизни людей и устранения вредных газов из атмосферы.

Использование электромобилей

Отказ от использования автомобилей на топливе. Каждый автомобиль выделяет огромное количество парниковых газов в год, так почему бы не сделать выбор в пользу здоровья окружающей среды? Ученые уже предлагают нам электромобили – экологически чистые машины, которые не используют топливо. Минус «топливный» автомобиль – еще один шаг к устранению парниковых газов. Во всем мире пытаются ускорить этот переход, но пока современные разработки таких машин далеки от совершенства. Даже в Японии, где наибольшее использование таких автомобилей, не готовы полностью переходить на их использование.

Альтернатива углеводородному топливу

Изобретение альтернативной энергии. Человечество не стоит на месте, так почему же мы «застряли» на использовании угля, нефти и газа? Сжигание этих природных компонентов приводит к накоплению парниковых газов в атмосфере, поэтому пора перейти на экологически чистый вид энергии.

Мы не можем полностью отказаться от всего того, что выделяет вредные газы. Зато мы можем способствовать увеличению кислорода в атмосфере. Не только настоящий мужчина должен посадить дерево – это обязан сделать каждый человек!

Что главное в решении любой проблемы? Не закрывать на нее глаза. Возможно, мы не замечаем вреда от парникового эффекта, но это точно заметят последующие поколения. Мы можем прекратить сжигать уголь и нефть, сохранить природную растительность планеты, отказаться от обычного автомобиля в пользу экологически чистого – и все для чего? Для того чтобы наша Земля существовала и после нас.



Статьи по теме: