Природный газ. Процесс горения

1. Описание предлагаемой технологии (метода) повышения энергоэффективности, его новизна и информированность о нем.

При сжигании топлива в котлах, процентное содержание «избыточного воздуха» может составлять от 3 до 70% (без учета присосов) от объема воздуха, кислород которого участвует в химической реакции окисления (сжигания) топлива.

«Избыточный воздух», участвующий в процессе сжигания топлива, это та часть атмосферного воздуха, кислород которого не участвует в химической реакции окисления (сжигания) топлива, но он необходим для создания требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котла. «Избыточный воздух» - величина переменная и для одного и того же котла она обратно пропорциональна количеству сжигаемого топлива, или чем меньше сжигается топлива, тем меньше требуется кислорода для его окисления (сжигания), но необходимо больше «избыточного воздуха» для создания требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котла. Процентное содержание «избыточного воздуха» в общем потоке воздуха, используемого для полного сжигания топлива, определяется по процентному содержанию кислорода в уходящих дымовых газах.

Если уменьшить процентное содержание «избыточного воздуха», то в уходящих дымовых газах появится окись углерода «СО» (ядовитый газ), что свидетельствует о недожоге топлива, т.е. его потере, а использование «избыточного воздуха» приводит к потере тепловой энергии на его нагрев, что увеличивает расход сжигаемого топлива и повышает выбросы парниковых газов «СО 2 » в атмосферу.

Атмосферный воздух состоит из 79% азота (N 2 - инертный газ без цвета, вкуса и запаха), который выполняет основную функцию по созданию требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства энергетической установки для полного и устойчивого сжигания топлива и 21% кислорода (О 2), который является окислителем топлива. Уходящие дымовые газы при номинальном режиме сжигания природного газа в котельных агрегатах состоят из 71% азота (N 2), 18% воды (Н 2 О), 9% углекислого газа (СО 2) и 2% кислорода (О 2). Процентное содержание кислорода в дымовых газах равное 2% (на выходе из топки) свидетельствует о 10% содержании избыточного атмосферного воздуха в общем потоке воздуха, участвующим в создании требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котельного агрегата для полного окисления (сжигания) топлива.

В процессе полного сжигания топлива в котлах необходимо утилизировать дымовые газы, замещая ими «избыточный воздух», что позволит предотвратить образование NOx (до 90,0%) и сократить выбросы «парниковых газов» (СО 2), а также расход сжигаемого топлива (до 1,5%).

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам для сжигания различных видов топлива и способам утилизации дымовых газов для сжигания топлива в энергетических установках.

Энергетическая установка для сжигания топлива содержит топку (1) с горелками (2) и конвективный газоход (3), подключенный через дымосос (4) и дымоход (5) к дымовой трубе (6); воздуховод (9) наружного воздуха, соединенный с дымоходом (5) через перепускной трубопровод (11) дымовых газов и воздуховодом (14) смеси наружного воздуха и дымовых газов, который соединен с дутьевым вентилятором (13); дроссель (10), установленный на воздуховоде (9), и задвижку (12), смонтированную на перепускном трубопроводе (11) дымовых газов, причем дроссель (10) и задвижка (12) оборудованы исполнительными механизмами; воздухоподогреватель (8), расположенный в конвективном газоходе (3), подключённый к дутьевому вентилятору (13) и соединенный с горелками (2) через воздуховод (15) нагретой смеси наружного воздуха и дымовых газов; датчик (16) отбора проб топочных газов, установленный на входе в конвективный газоход (3) и подключенный к газоанализатору (17) определения содержания кислорода и окиси углерода в топочных газах; электронный блок управления (18), который подключён к газоанализатору (17) и к исполнительным механизмам дросселя (10) и задвижки (12). Способ утилизации дымовых газов для сжигания топлива в энергетической установке включает отбор части дымовых газов со статическим давлением больше атмосферного из дымохода (5) и подачу ее через перепускной трубопровод (11) дымовых газов в воздуховод (9) наружного воздуха со статическим давлением наружного воздуха меньше атмосферного; регулирование подачи наружного воздуха и дымовых газов исполнительными механизмами дросселя (10) и задвижки (12), управляемыми электронным блоком управления (18), таким образом, чтобы процентное содержание кислорода в наружном воздухе снизилось до уровня, при котором на входе в конвективный газоход (3) содержание кислорода в топочных газах составляло менее 1% при отсутствии окиси углерода; последующее смешивание дымовых газов с наружным воздухом в воздуховоде (14) и дутьевом вентиляторе (13) для получения однородной смеси наружного воздуха и дымовых газов; нагрев полученной смеси в воздухоподогревателе (8) за счет утилизации тепла топочных газов; подачу нагретой смеси в горелки (2) через воздуховод (15).

2. Результат повышения энергоэффективности при массовом внедрении.
Экономия сжигаемого топлива в котельных, на ТЭЦ или ГРЭС до 1,5%

3. Существует ли необходимость проведения дополнительных исследований для расширения перечня объектов для внедрения данной технологии?
Существует, т.к. предлагаемую технологию можно применить также и для двигателей внутреннего сгорания и для газотурбинных установок.

4. Причины, по которым предлагаемая энергоэффективная технология не применяются в массовом масштабе.
Основной причиной является новизна предлагаемой технологии и психологическая инерция специалистов в области теплоэнергетики. Необходима медиатизация предлагаемой технологии в Министерствах Энергетики и Экологии, энергетических компаниях генерирующих электрическую и тепловую энергию.

5. Существующие меры поощрения, принуждения, стимулирования для внедрения предлагаемой технологии (метода) и необходимость их совершенствования.
Введение новых более жестких экологических требований к выбросам NOx от котельных агрегатов

6. Наличие технических и других ограничений применения технологии (метода) на различных объектах.
Расширить действие п. 4.3.25 «ПРАВИЛ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И СЕТЕЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ МИНЭНЕРГО РФ ОТ 19 ИЮНЯ 2003 Г. № 229» для котлов сжигающих любые виды топлива. В следующей редакции: «…На паровых котлах, сжигающих любое топливо, в регулировочном диапазоне нагрузок его сжигание должно осуществляться, как правило, при коэффициентах избытка воздуха на выходе из топки менее 1,03…».

7. Необходимость проведения НИОКР и дополнительных испытаний; темы и цели работ.
Необходимость проведения НИОКР заключается в получении наглядной информации (учебного фильма) для ознакомления сотрудников теплоэнергетических компаний с предлагаемой технологией.

8. Наличие постановлений, правил, инструкций, нормативов, требований, запретительных мер и других документов, регламентирующих применение данной технологии (метода) и обязательных для исполнения; необходимость внесения в них изменений или необходимость изменения самих принципов формирования этих документов; наличие ранее существовавших нормативных документов, регламентов и потребность в их восстановлении.
Расширить действия «ПРАВИЛ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И СЕТЕЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ МИНЭНЕРГО РФ ОТ 19 ИЮНЯ 2003 Г. № 229»

п. 4.3.25 для котлов сжигающих любые виды топлива. В следующей редакции: «…На паровых котлах, сжигающих топливо, в регулировочном диапазоне нагрузок его сжигание должно осуществляться, как правило, при коэффициентах избытка воздуха на выходе из топки менее 1,03… ».

п. 4.3.28. «…Растопка котла на сернистом мазуте должна производиться с предварительно включенной системой подогрева воздуха (калориферы, система рециркуляции горячего воздуха). Температура воздуха перед воздухоподогревателем в начальный период растопки на мазутном котле должна быть, как правило, не ниже 90°С. Растопка котла на любом другом виде топлива должна производиться с предварительно включенной системой рециркуляции воздуха »

9. Необходимость разработки новых или изменения существующих законов и нормативно-правовых актов.
Не требуется

10. Наличие внедренных пилотных проектов, анализ их реальной эффективности, выявленные недостатки и предложения по совершенствованию технологии с учетом накопленного опыта.
Испытание предлагаемой технологии осуществлялось на настенном газовом котле с принудительной тягой и выводом уходящих дымовых газов (продуктов сгорания природного газа) на фасад здания номинальной мощностью 24,0 кВт, но под нагрузкой 8,0 кВт. Подача дымовых газов в котел осуществлялась за счет короба, устанавливаемого на расстоянии 0,5 м от факельного выброса коаксиальной дымовой трубы котла. Короб задерживал уходящие дымовые, которые в свою очередь замещали «избыточный воздух», необходимый для полного сжигания природного газа, а газоанализатором, установленным в отводе газохода котла (штатном месте) контролировались выбросы. В результате эксперимента удалость снизить выбросы NOx на 86,0% и сократить выбросы «парниковых газов» СО2 1,3%.

11. Возможность влияния на другие процессы при массовом внедрении данной технологии (изменение экологической обстановки, возможное влияние на здоровье людей, повышение надежности энергоснабжения, изменение суточных или сезонных графиков загрузки энергетического оборудования, изменение экономических показателей выработки и передачи энергии и т.п.).
Улучшение экологической обстановки, влияющей на здоровье людей и снижение затрат на топливо при выработке тепловой энергии.

12. Необходимость специальной подготовки квалифицированных кадров для эксплуатации внедряемой технологии и развития производства.
Достаточен будет тренинг существующего обслуживающего персонала котельных агрегатов с предлагаемой технологией.

13. Предполагаемые способы внедрения:
коммерческое финансирование (при окупаемости затрат), так как предлагаемая технология окупается максимум в течение двух лет.

Информация предоствлена: Ю. Панфил, а/я 2150, г. Кишинев, Молдова, MD 2051, e-mail: [email protected]


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Единицы измерения газообразных компонентов продуктов сгорания →

Содержание раздела

При сжигании органических топлив в топках котлов образуются различные продукты сгорания, такие как ок­сиды углерода СО х = СО + СО 2 , водяные пары Н 2 О, оксиды серы SO x = SO 2 + SО 3 , оксиды азота NO x = NO + NО 2 , полициклические арома­тические углеводороды (ПАУ), фтористые соединения, соединения ванадия V 2 O 5 , твердые частицы и др. (см. табл. 7.1.1). При неполном сгорании топлива в топках уходящие газы могут также содержать углеводороды СН 4 , С 2 Н 4 и др. Все продукты неполного сгорания являются вредными, однако при современной технике сжигания топлива их образование можно свести к минимуму [ 1 ].

Таблица 7.1.1. Удельные выбросы при факельном сжигании органических топлив в энергетических котлах [ 3 ]

Условные обозначения: А р, S p – соответственно содержание золы и серы на рабочую массу топлива, %.

Критерием санитарной оценки среды является предельно допустимая концентрация (ПДК) вредного вещества в атмосферном воздухе на уровне земли. Под ПДК следует понимать такую концентрацию различных веществ и химических соединений, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений или заболеваний.

Предельно допустимые концентрации (ПДК) вредных веществ в атмосферном воздухе населенных мест приведены в табл. 7.1.2 [ 4 ]. Максимально-разовая концентрация вредных веществ определяется по пробам, отобранным в течение 20 мин, среднесуточная - за сутки.

Таблица 7.1.2. Предельно допустимые концентрации вредных веществ в атмосферном воздухе населенных мест

Загрязняющее вещество Предельно допустимая концентрация, мг/ м 3
Максимально-разовая Среднесуточная
Пыль нетоксичная 0,5 0,15
Диоксид серы 0,5 0,05
Оксид углерода 3,0 1,0
Монооксид углерода 3,0 1,0
Диоксид азота 0,085 0,04
Оксид азота 0,6 0,06
Сажа (копоть) 0,15 0,05
Сероводород 0,008 0,008
Бенз(а)пирен - 0,1 мкг/100 м 3
Пентаксид ванадия - 0,002
Фтористые соединения (по фтору) 0,02 0,005
Хлор 0,1 0,03

Расчеты ведутся по каждому вредному веществу в отдельности, с тем чтобы концентрация каждого из них не превышала значений, приведенных в табл. 7.1.2. Для котельных эти условия ужесточены введением дополнительных требований о необходимости суммирования воздействия оксидов серы и азота, которое определяется выражением

В то же время, вследствие локальных недостатков воздуха или неблаго­приятных тепловых и аэродинамических условий, в топках и камерах сго­рания образуются продукты неполного сгорания, состоящие в основном из монооксида углерода СО (угарного газа), водорода Н 2 и различных углево­дородов, которые характеризуют потери тепла в котлоагрегате от химиче­ской неполноты сгорания (химический недожог).

Кроме этого, в процессе сжигания получается целый ряд химических соединений, образующихся вследствие окисления различных составляю­щих топлива и азота воздуха N 2 . Наиболее существенную их часть состав­ляют оксиды азота NO x и серы SO x .

Оксиды азота образуются за счет окисления как молекулярного азота воздуха, так и азота, содержащегося в топливе. Экспериментальные иссле­дования показали, что основная доля образовавшихся в топках котлов NO х, а именно 96÷100%, приходится на монооксид (оксид) азота NO. Ди­оксид NO 2 и гемиоксид N 2 O азота образуются в значительно меньших ко­личествах, и их доля приблизительно составляет: для NO 2 – до 4%, а для N 2 O – сотые доли процента от общего выброса NO x . При типичных усло­виях факельного сжигания топлив в котлах концентрации диоксида азота NO 2 , как правило, пренебрежительно малы по сравнению с содержанием NO и обычно составляют от 0÷7 ррm до 20÷30 ррm . В то же время быстрое перемешивание горячих и холодных областей в турбулентном пламени может привести к появлению относительно больших концентраций диок­сида азота в холодных зонах потока. Кроме этого, частичная эмиссия NO 2 происходит в верхней части топки и в горизонтальном газоходе (при T > 900÷1000 К) и при определенных условиях также может достигать за­метных размеров.

Гемиоксид азота N 2 O, образующийся при сжигании топлив, является, по всей видимости, кратковременным промежуточным веществом. N 2 O практически отсутствует в продуктах сгорания за котлами.

Содержащаяся в топливе сера является источником образования окси­дов серы SO x: сернистого SO 2 (диоксид серы) и серного SO 3 (триоксид серы) ангидридов. Суммарный массовый выброс SO x зависит только от содержания серы в топливе S p , а их концентрация в дымовых газах – еще и от коэффициента расхода воздуха α. Как правило, доля SO 2 составляет 97÷99%, а доля SO 3 – 1÷3% от суммарного выхода SO x . Фактическое со­держание SO 2 в уходящих из котлов газах колеблется от 0,08 до 0,6 %, а концентрация SO 3 – от 0,0001 до 0,008 %.

Среди вредных компонентов дымовых газов особое место занимает большая группа полициклических ароматических углеводородов (ПАУ). Многие ПАУ обладают высокой канцерогенной и (или) мутагенной актив­ностью, активизируют фотохимические смоги в городах, что требует строгого контроля и ограничения их эмиссии. В то же время некоторые ПАУ, например, фенантрен, флуорантен, пирен и ряд других, физиологи­чески почти инертны и не являются канцерогенно-опасными.

ПАУ образуются в результате неполного сгорания любых углеводо­родных топлив. Последнее имеет место из-за торможения реакций окисления углеводородов топлива холодными стенками топочных устройств, а также может быть вызвано неудовлетворительным смешением топлива и воздуха. Это приводит к образованию в топках (камерах сгорания) ло­кальных окислительных зон с пониженной температурой или зон с избыт­ком топлива.

Вследствие большого количества разных ПАУ в дымовых газах и трудности измерения их концентраций принято уровень канцерогенной загрязненности продуктов сгорания и атмосферного воздуха оценивать по концентрации наиболее сильного и стабильного канцерогена – бенз(а)пирена (Б(а)П) C 20 H 12 .

Ввиду высокой токсичности, следует особо отметить такие продукты сжигания мазута, как оксиды ванадия. Ванадий содержится в минеральной части мазута и при его сжигании образует оксиды ванадия VO, VO 2 . Одна­ко при образовании отложений на конвективных поверхностях оксиды ва­надия представлены в основном в виде V 2 O 5 . Пентаоксид ванадия V 2 O 5 яв­ляется наиболее токсичной формой оксидов ванадия, поэтому учет их вы­бросов производится в пересчете на V 2 O 5 .

Таблица 7.1.3. Примерная концентрация вредных веществ в продуктах сгорания при факельном сжигании органических топлив в энергетических котлах

Выбросы = Концентрация, мг/м 3
Природный газ Мазут Уголь
Оксиды азота NO x (в пересчете на NO 2) 200÷ 1200 300÷ 1000 350 ÷1500
Сернистый ангидрид SO 2 - 2000÷6000 1000÷5000
Серный ангидрид SO 3 - 4÷250 2 ÷100
Угарный газ СО 10÷125 10÷150 15÷150
Бенз(а)пирен С 20 Н 12 (0,1÷1, 0)·10 -3 (0,2÷4,0)· 10 -3 (0,3÷14)· 10 -3
Твердые частицы - <100 150÷300

При сжигании мазута и твердого топлива в выбросах также содержатся твердые частицы, состоящие из летучей золы, сажистых частиц, ПАУ и несгоревшего в результате механического недожога топлива.

Диапазоны концентраций вредных веществ в дымовых газах при сжи­гании различных типов топлив приведены в табл. 7.1.3.

Cтраница 1


Состав дымовых газов рассчитывают исходя из реакций сгорания составных частей топлива.  

Состав дымовых газов определяют при помощи специальных приборов, называемых газоанализаторами. Это основные приборы, определяющие степень совершенства и экономичности топочного процесса в зависимости от содержания углекислоты в уходящих дымовых газах, оптимальное значение которой зависит от рода топлива, типа и качества топочного устройства.  

Состав дымовых газов при установившемся режиме изменяется ледующим образом: содержание H2S и S02 неуклонно снижается, 32, СО2 и СО - изменяется незначительно / При послойном горении окса верхние слои катализатора регенерируются раньше нижних. Наблюдается постепенное снижение температуры в реакционной юне, и в дымовых газах на выходе из реактора появляется кислород.  


Состав дымовых газов контролируют по пробам.  

Состав дымового газа определяется не только содержанием водяных паров, но также и содержанием других компонентов.  

Состав дымовых газов меняется по длине факела. Учесть это изменение при расчете радиационного теплообмена не представляется возможным. Поэтому практические расчеты радиационного теплообмена ведут по составу дымовых газов в конце камеры. Это упрощение в известной степени оправдывается тем соображением, что процесс горения обычно интенсивно протекает в начальной, не очень большой части камеры, и поэтому большая часть камеры бывает занята газами, состав которых близок к его составу в конце камеры. В конце ее почти всегда содержится очень немного продуктов неполного сгорания.  

Состав дымовых газов рассчитывают, исходя из реакций сгорания составных частей топлива.  

Состав дымовых газов при полном сгорании газа различных месторождений отличается незначительно.  

В состав дымовых газов входит: 2 61 кг СО2; 0 45 кг Н2О; 7 34 кг N2 и 3 81 кг воздуха на I кг угля. При 870 С объем дымовых газов на 1 кг угля составляет 45 ж3, а при 16 С он равен 11 3 м3; плотность смеси дымовых газов равна 0 318 кг / ж3, что в 1 03 раза больше плотности воздуха при той же температуре.  

Регулирование процесса горения (Основные принципы горения)

>> Вернуться к содержанию

Для оптимального горения необходимо использовать большее количество воздуха, чем следует из теоретического расчёта химической реакции (стехиометрический воздух).

Это вызвано необходимостью окислить всё имеющееся в наличии топливо.

Разница между реальным количеством воздуха и стехиометрическим количеством воздуха называется избытком воздуха. Как правило, избыток воздуха находится в пределах от 5% до 50% в зависимости от типа топлива и горелки.

Обычно, чем труднее окислить топливо, тем большее количество избыточного воздуха требуется.

Избыточное количество воздуха не должно быть чрезмерным. Чрезмерное количество подаваемого воздуха для горения снижает температуру дымовых газов и увеличивает тепловые потери теплогенератора. Кроме того, при определённом предельном количестве избыточного воздуха, факел слишком сильно охлаждается и начинают образовываться CO и сажа. И наоборот, недостаточное количество воздуха вызывает неполное сгорание и те же самые проблемы, указанные выше. Поэтому, чтобы обеспечить полное сгорание топлива и высокую эффективность горения количество избыточного воздуха должно быть очень точно отрегулировано.

Полнота и эффективность сгорания проверяются измерениями концентрации угарного газа CO в дымовых газах. Если угарного газа нет, значит сгорание произошло полностью.

Косвенно уровень избыточного воздуха можно рассчитать, измеряя концентрацию свободного кислорода O 2 и/или двуокиси углерода СO 2 в дымовых газах.

Количество воздуха будет примерно в 5 раз больше, чем измеренное количество углерода в объёмных процентах.

Что касается СO 2 , то его количество в дымовых газах зависит только от количества углерода в топливе, а не от количества избыточного воздуха. Его абсолютное количество будет постоянным, а процент от объёма будет изменяться в зависимости от количества избыточного воздуха, находящегося в дымовых газах. При отсутствии избыточного воздуха количество СO 2 будет максимальным, при увеличении количества избыточного воздуха, объёмный процент СO 2 в дымовых газах понижается. Меньшее количество избыточного воздуха соответствует большему количеству СO 2 и наоборот, поэтому горение идет более эффективно, когда количество СO 2 близко к своему максимальному значению.

Состав дымовых газов можно отобразить на простом графике с помощью "треугольника горения" или треугольника Оствальда, который строится для каждого типа топлива.

С помощью этого графика, зная процентное содержание СO 2 и O 2 , мы можем определить содержание CO и количество избыточного воздуха.

В качестве примера на рис. 10 приведен треугольник горения для метана.

Рисунок 10. Треугольник горения для метана

По оси X указано процентное содержание O 2 , по оси Y указано процентное содержание СO 2 . гипотенуза идет от точки А, соответствующей максимальному содержанию СO 2 (в зависимости от топлива) при нулевом содержании O 2 , до точки В, соответствующей нулевому содержанию СO 2 и максимальному содержанию O 2 (21%). Точка А соответствует условиям стехиометрического горения, точка В -отсутствию горения. Гипотенуза - это множество точек, соответствующих идеальному горению без CO.

Прямые линии, параллельные гипотенузе, соответствуют различному процентному содержанию CO.

Предположим, что наша система работает на метане и анализ дымовых газов показал, что содержание СO 2 составляет 10%, а содержание O 2 составляет 3%. Из треугольника для газа метана мы находим, то содержание CO равно 0, а содержание избыточного воздуха равно 15%.

В таблице 5 показано максимальное содержание СO 2 для разных видов топлива и значение, которое соответствует оптимальному горению. Это значение рекомендованное и рассчитано на основе опыта. Следует отметить, что когда из центральной колонки берётся максимальное значение необходимо произвести измерение выбросов, по процедуре описанной в главе 4.3.

состав продуктов полного сгорания

В состав продуктов полного сгорания входят также балластные составляющие- азот (N2) и кислород (О2).

Азот всегда попадает в топку с воздухом, а кислород остается от не использованных в процессе сгорания воздушных потоков. Таким образом, дымовые газы, образующиеся при полном сгорании газообразного топлива, состоят из четырех компонентов: СОг, Н2О, Ог и N2

При неполном сгорании газообразного топлива в дымовых газах появляются горючие компоненты, оксид углерода, водород, а иногда и метан. При большом химическом недожоге в продуктах сгорания появляются частицы углерода, из которых образуется сажа. Неполное сжигание газа может возникнуть при недостатке воздуха в зоне горения (сст>1), неудовлетворительном смешении воздуха с газом, соприкосновении факела с холодными стенками, которое влечет обрыв реакции горения.

Пример. Допустим, что от сжигании 1 м3 дашавского газа образуется сухих продуктов сгорания Kci-35 м3/м3, при этом в продуктах сгорания содержатся горючие составляющие в размере: СО=0,2%; Н2=0,10/о; СН4= = 0,05%.

Определить потерю теплоты от химической неполноты сгорания. Эта потеря равна Q3=VC, г ("26, ЗСО+Ю8Н3 + 358СН4) = 35 (126,3-0,2+ 108-0,1+358-0,05) =

1890 кДж/м3.

Точка росы продуктов сгорания определяется следующим образом. Сначала находят полный объем продуктов сгорания

и, зная количество водяных паров Vhn, которое в них содержится, определяют парциальное давление водяных паров Рнго (давление насыщенного водяного пара при определенной температуре) по формуле

P»to=vmlVr, бар.

Каждому значению парциального давления водяных паров соответствует определенная точка росы.

Пример. От сжигания 1 м3 дашавского природного газа при ат = 2,5 образуется продуктов сгорания Vr = 25 м3/м3, в том числе водяных паров Vsn = 2,4 м3/м3. Требуется определить температуру точки росы.

Парциальное давление водяных паров в продуктах сгорания равно

^0=^/^ = 2,4/25 = 0,096 бара.

Найденному парциальному давлению соответствует температура 46 °С. Это и есть точка росы. Если дымовые газы данного состава будут иметь температуру ниже 46 "С, то начнется процесс конденсации водяных паров.

Экономичность работы бытовых печей, переведенных на газовое топливо, характеризуется коэффициентом полезного действия (КПД), КПД любого теплового аппарата определяется из теплового баланса, т. е. равенства между теплотой, образовавшейся при сжигании топлива, и расходом этой теплоты на полезный обогрев.

При эксплуатации газовых бытовых печей имеют место случаи, когда в дымовых трубах уходящие газы охлаждаются до точки росы. Точкой росы называется температура, до которой нужно охладить воздух или другой газ, чтобы содержащийся в нем водяной пар достиг состояния насыщения.



Статьи по теме: