Термические и гидравлические характеристики пто. Что учитывается в обязательном порядке? Подробнее об исходных данных для расчета

Купленов Н.И. к.т.н., Мотовицкий С.В. аспирант
Тульский государственный университет

Благодаря своим достоинствам разборные пластинчатые водонагреватели (ПВН) активно вытесняют из отечественных систем теплоснабжения традиционные трубчатые теплообменники. Обеспечивая в несколько раз более высокий начальный коэффициент теплопередачи по сравнению с трубчатыми, эти теплообменники, однако гораздо «чувствительнее» к влиянию отложений накипи, термическое сопротивление которой более резко уменьшает теплопередачу .

При высоком содержании накипеобразующих солей и продуктов коррозии в воде, характерном для большинства регионов РФ, расчетный режим работы ПВН быстро нарушается, уменьшение коэффициента теплопередачи компенсируется повышением температуры греющего теплоносителя или его расхода. На практике это не всегда возможно, поэтому в подавляющем большинстве случаев необходима промывка.

Для компенсации постепенного уменьшения коэффициента теплопередачи необходим запас поверхности теплообмена ∆F.

Отечественная практика заказов ПВН по опросным листам заимствована из зарубежной без учета собственного опыта т.е. запас теплообменной поверхности или отсутствует или составляет 2-10% от расчетной чистой поверхности F 0 .

Из опыта эксплуатации скоростных водонагревателей известно, что вследствие низкого качества противонакипной обработки водопроводной воды коэффициент теплопередачи уменьшается достаточно быстро. Так, по данным при среднем качестве воды в ЦТП г. Москвы за 4 месяца эксплуатации он уменьшился на 45-50%. Из этого следует, что при неизменных начальных температурах теплоносителей требуемая температура нагрева воды может быть обеспечена лишь при 100% - ном запасе по сравнению с расчетной величиной теплообменной поверхности.

Недостаточная величина запаса ∆F обусловит короткий межпромывочный период и необходимость частой промывки водонагревателя; завышенная величина ∆F уменьшит количество промывок, но одновременно возрастут первоначальные затраты на ПВН.

Известно, что стоимость пластинчатых водонагревателей составляет основную долю затрат на оборудование теплового пункта, в то же время и затраты на химическую промывку, как показывает опыт , тоже значительны. Поэтому экономически оправдано определение поверхности теплообмена с учетом фактической интенсивности накипеобразования и необходимости ее регулярной промывки.

Основа методики такого определения заключается в обеспечении минимума годовых затрат на амортизацию запаса поверхности теплообмена ∆F и затрат на регулярную промывку водонагревателя; это условие выполняется равенством затрат

где - коэффициент амортизации ПВН, %/100; , - стоимость 1м 2 теплообменной поверхности и затрат на промывку, руб./м 2 ; - расчетная поверхность теплообмена при отсутствии накипи, м 2 ; , - продолжительность межпромывочного периода и годовой эксплуатации ПВН, сут.

При заданных начальных температурах и расходах теплоносителей, требуемый коэффициент эффективности нагрева воды при уменьшении коэффициента теплопередачи от образующейся накипи будет обеспечиваться выполнением условия

(2)

где , - коэффициенты теплопередачи при отсутствии накипи и при ее появлении.

Термическое сопротивление теплопередаче

(3)

где , - термическое сопротивление теплопередачи при чистой поверхности и термическое сопротивление слоя накипи.

После подстановки (3) в уравнение (2) получим

(5)

Подстановкой (5) в уравнение (1а) получим

Интенсивность накипеобразования определяется качеством воды, температурным и гидравлическим режимами работы ПВН. В конце межпромывочного периода сопротивление слоя накипи толщиной в соответствии с принятой математической моделью может быть рассчитано по уравнению:

где , - скорости образования и смыва накипи; - коэффициент теплопроводности накипи.

По литературным данным и выполненным исследованиям

где , - экспериментальные константы, - концентрация накипеобразующих солей в воде, кг/м 3 ; - касательное напряжение на поверхности накипи, Па; - температура воды, ˚С.

Термическое сопротивление удобно выразить в виде

где - соотношение скоростей нагреваемого «холодного» и греющего теплоносителей; - скорость холодного теплоносителя; - комплекс величин, характеризующих теплофизические характеристики теплоносителя и конструктивные особенности пластины ПВН; - термическое сопротивление стенки пластины.

Уравнение (6) после подстановки в него (7) и (10) в своей правой и левой части содержит одну неизвестную величину - продолжительность межпромывочного периода - и позволяет при заданных исходных данных определить ее целесообразное значение.

Основными экономическими факторами, определяющими величину , является стоимость 1м 2 теплообменной поверхности , и затраты на промывку , руб./м 2 .

На рис.1 приведены результаты расчетов экономически целесообразной продолжительности межпромывочного периода при скорости нагреваемого теплоносителя ω х = 0,4 м/с в зависимости от определяющих величин.

Рис.1 Зависимость экономически целесообразных относительной величины запаса теплообменной поверхности ∆F/F 0 и продолжительности межпромывочного периода τ мпр пластинчатого водонагревателя для горячего водоснабжения

Примечание:

1)Расчет производился при ω х = 0,4 м/с для пластин типа М10-BFG.

2)Исходные данные:

С=0,00357 кг/м 3 ; а м =0,19; λ н =1,05 Вт/(м·˚С); =12,7·10 -10 ; А=13374.

С повышением удельной стоимости промывки теплообменной поверхности экономически целесообразный межпромывочный период увеличивается, и приведенные зависимости позволяют получить количественную оценку продолжительности этого периода.

С другой стороны, при высокой стоимости теплообменника, что имеет место при уменьшении площади единичной пластины, величина экономически целесообразного запаса теплообменной поверхности уменьшается, конкретные величины определяющих факторов и зависимых от них величин приведены на графиках. Из этих данных следует, в частности, что для обеспечения требуемого температурного режима горячего водоснабжения даже при умеренной жесткости водопроводной воды и ежемесячной промывке запас теплообменной поверхности должен быть не менее 60% по сравнению с ее величиной при безнакипном режиме работы.

Заметим, что сопутствующее образованию накипи возрастание гидравлического сопротивления ПВН при экономически целесообразных продолжительностях межпромывочного периода несущественно, поскольку в среднем проходное сечение межпластинчатых каналов уменьшается на 4-8%.

Литература

1. Жаднов О.В. "Пластинчатые теплообменники - дело тонкое"// "Новости теплоснабжения" -2005.,-N 3.-c.39-53.

2. Чернышев Д.В. "Прогнозирование накипеобразования в пластинчатых водонагревателях для повышения надежности их работы" Дисс. к.т.н.05.23.03.- Тула, 2002. - 199с.

3. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. -М.: Машиностроение, 1989.

4. Чистяков Н.Н. и др. Повышение эффективности работы систем горячего водоснабжения. М., Стройиздат, 1988.

Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Имеет следующий вид:

Q = F‧k‧Δt, где:

  • Q - размер теплового потока, Вт;
  • F - площадь рабочей поверхности, м2;
  • k - коэффициент передачи тепла;
  • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

  • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

Исходные данные:

  • Температура греющего носителя при входе t 1 вх = 14 ºС;
  • Температура греющего носителя при выходе t 1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
  • Расход массы греющего носителя G 1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Размещено 23.10.2013

Данные рекомендации по подбору пластинчатых теплообменников направлены в помощь проектировщику для правильного выбора теплообменного аппарата по ключевым критериям, таким как гидравлическое сопротивление, площадь теплообмена, температурный режим и конструктивные особенности.


Для подбора и моделирования работы пластинчатых теплообменников Данфосс служит программа Hexact. Предназначена она для паяных пластинчатых теплообменников типов XB и разборных пластинчатых теплообменников типов XG. Для подбора теплообменника вводят такие исходные данные, как:


Мощность теплообменника – тепловую мощность, которую необходимо передать от греющего теплоносителя (с большей температурой) к нагреваемому теплоносителю;

Температурный режим – начальные температуры греющего и нагреваемого теплоносителей, а также желаемые конечные температуры теплоносителей (температуры теплоносителей на выходе из теплообменника);

Тип теплоносителя;

Запас поверхности нагрева;

Максимально допустимое гидравлическое сопротивление ходов теплообменника.


Из выше перечисленных данных первые три не вызывают затруднений. Но такие параметры, как запас поверхности и гидравлическое сопротивление, которые на первый взгляд могут показаться не существенными, вносят значительные сложности при подборе теплообменника. Эти параметры должен задать проектировщик, который может не являться специалистом в области теплообменных аппаратов. Рассмотрим эти параметры подробнее.


Максимально допустимое гидравлическое сопротивление


При подборе теплообменника необходимо не только задаваться целью обеспечения теплопередачи, но и рассматривать систему в целом, оценивая влияние теплообменника на гидравлический режим системы. Если задаться большим значением гидравлического сопротивления – существенно увеличится общее сопротивление системы, что приведёт к необходимости применения циркуляционных насосов с неоправданно завышенной мощностью. Особенно это важно, если насосы находятся в составе индивидуального теплового пункта жилого дома. Более мощные насосы создают больший уровень шума, вибрации, что может привести к последующим жалобам жильцов. К тому же, с большой вероятностью, насосы будут работать в неоптимальном режиме, когда нужно обеспечить большой напор с малым расходом. Такой режим работы приводит к снижению КПД и ресурса насосов, что в свою очередь увеличивает эксплуатационные расходы.


С другой стороны – высокое гидравлическое сопротивление пластинчатых теплообменников указывает на высокую скорость теплоносителя в каналах теплообменника; если это чистые теплообменники – без накипи и отложений. Это положительно сказывается на коэффициенте теплопередачи, вследствие чего требуется меньшая поверхность теплопередачи, что снижает стоимость теплообменника.


Задача правильного выбора гидравлического сопротивления сводится к нахождению оптимума между стоимостью теплообменника и его влиянием на общее сопротивление системы.


Специалисты компании «Данфосс ТОВ» рекомендуют для пластинчатых теплообменников задавать максимальное гидравлическое сопротивление 2 м вод. ст. (20 кПа) для систем отопления и горячего водоснабжения, и 4 м вод. ст (40 кПа) для систем охлаждения.


Запас поверхности нагрева


Основная задача дополнительной поверхности теплообмена состоит в обеспечении расчётной мощности теплообмена при снижении коэффициента теплопередачи вследствие загрязнения поверхностей теплообмена. Наиболее подвержены загрязнению и образованию накипи теплообменники систем горячего водоснабжения, в которых происходит нагрев водопроводной воды с, как правило, высоким содержанием солей. Поэтому теплообменники систем горячего водоснабжения нуждаются в большем запасе поверхности нагрева, чем теплообменники систем теплоснабжения, охлаждения, в которых в качестве теплоносителя применяют подготовленную воду.

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

Виды теплообмена

Теперь поговорим о - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день - конечно же, рекуперативные.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые - это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду - в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов - это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное - многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср - удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k - коэффициент теплопередачи (принимаем равным 6350 [Вт/м 2 ]), а ΔТср.лог. - среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м 2 .

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ - плотность, [кг/м 3 ], η - динамическая вязкость, [Н*с/м 2 ], v - скорость среды в канале, [м/с], d см - смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 - в условиях нагрева жидкости, и n = 0,3 - в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ - коэффициент теплопроводности, ϭ - толщина стенки канала, α1 и α2 - коэффициенты теплоотдачи от каждого из теплоносителей стенке.



Статьи по теме: