Второе следствие из закона авогадро. Закон Авогадро: описание и биография учёного


Введение 2

1.Закон Авогадро 3

2.Газовые законы 6

3.Следствия из закона Авогадро 7

4.Задачи на закон Авогадро 8

Заключение 11

Список литературы 12

Введение

Предвидеть результаты эксперимента, почувствовать общее начало, предугадать закономерность – этим отмечено творчество многих ученых. Чаще всего прогнозирование распространяется только на ту область, которой занят исследователь, а решимость храбро шагнуть далеко вперед в своих предсказаниях дана далеко не каждому. Иногда смелость может придать способность к логическим построениям.

1.Закон Авогадро

В 1808 Гей-Люссак (совместно с немецким естествоиспытателем Александром Гумбольдтом) сформулировал так называемый закон объемных отношений, согласно которому соотношение между объемами реагирующих газов выражается простыми целыми числами. Например, 2 объема водорода соединяются с 1 объемом водорода, давая 2 объема водяного пара; 1 объем хлора соединяется с 1 объемом водорода, давая 2 объема хлороводорода и т.д. Этот закон в то время мало что давал ученым, поскольку не было единого мнения о том, из чего состоят частицы разных газов. Не существовало и четкого различия между такими понятиями как атом, молекула, корпускула.

В 1811 Авогадро, тщательно проанализировав результаты экспериментов Гей-Люссака и других ученых, пришел к выводу, что закон объемных отношений позволяет понять, как же «устроены» молекулы газов. «Первая гипотеза, – писал он, – которая возникает в связи с этим и которая представляется единственно приемлемой, состоит в предположении, что число составных молекул любого газа всегда одно и то же в одном и том же объеме...» А «составные молекулы» (сейчас мы их называем просто молекулами), по мысли Авогадро, состоят из более мелких частиц – атомов.

Тремя годами позже Авогадро изложил свою гипотезу еще более четко и сформулировал ее в виде закона, который носит его имя: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул...» Это добавление было очень важным: оно означало, что можно, измеряя плотность разных газов, определять относительные массы молекул, из которых эти газы состоят. Действительно, если в 1 л водорода содержится столько же молекул, что и в 1 л кислорода, то отношение плотностей этих газов равно отношение масс молекул. Авогадро особо отмечал, что молекулы в газах не обязательно должны состоять из одиночных атомов, а могут содержать несколько атомов – одинаковых или разных. (Справедливости ради следует сказать, что в 1814 известный французский физик А.М. Ампер независимо от Авогадро пришел к тем же выводам.)

Во времена Авогадро его гипотезу невозможно было доказать теоретически. Но эта гипотеза давала простую возможность экспериментально устанавливать состав молекул газообразных соединений и определять их относительную массу. Попробуем проследить логику таких рассуждений. Эксперимент показывает, что объемы водорода, кислорода и образующихся из этих газов паров воды относятся как 2:1:2. Выводы из этого факта можно сделать разные. Первый: молекулы водорода и кислорода состоят из двух атомов (Н 2 и О 2), а молекула воды – из трех, и тогда верно уравнение 2Н 2 + О 2 → 2Н 2 О. Но возможен и такой вывод: молекулы водорода одноатомны, а молекулы кислорода и воды двухатомны, и тогда верно уравнение 2Н + О 2 → 2НО с тем же соотношением объе мов 2:1:2. В первом случае из соотношения масс водорода и кислорода в воде (1:8) следовало, что относительная атомная масса кислорода равна 16, а во втором – что она равна 8. Кстати, даже через 50 лет после работ Гей-Люссака некоторые ученые продолжали настаивать на том, что формула воды именно НО, а не Н 2 О. Другие же считали, что правильна формула Н 2 О 2 . Соответственно в ряде таблиц атомную массу кислорода принимали равной 8.

Однако был простой способ выбрать из двух предположений одно верное. Для этого надо было лишь проанализировать результаты и других аналогичных экспериментов. Так, из них следовало, что равные объемы водорода и хлора дают удвоенный объем хлороводорода. Этот факт сразу отвергал возможность одноатомности водорода: реакции типа H + Cl → HCl, H + Cl 2 → HCl 2 и им подобные не дают удвоенного объема HCl. Следовательно, молекулы водорода (а также хлора) состоят из двух атомов. Но если молекулы водорода двухатомны, то двухатомны и молекулы кислорода, а в молекулах воды три атома, и ее формула – Н 2 О. Удивительно, что такие простые доводы в течение десятилетий не могли убедить некоторых химиков в справедливости теории Авогадро, которая в течение нескольких десятилетий оставалась практически незамеченной.

Отчасти это объясняется отсутствием в те времена простой и ясной записи формул и уравнений химических реакций. Но главное – противником теории Авогадро был знаменитый шведский химик Йенс Якоб Берцелиус, имевший непререкаемый авторитет среди химиков всего мира. Согласно его теории, все атомы имеют электрические заряды, а молекулы образованы атомами с противоположными зарядами, которые притягиваются друг к другу. Считалось, что атомы кислорода имеют сильный отрицательный заряд, а атомы водорода – положительный. С точки зрения этой теории невозможно было представить молекулу кислорода, состоящую из двух одинаково заряженных атомов! Но если молекулы кислорода одноатомны, то в реакции кислорода с азотом: N + O → NO соотношение объемов должно быть 1:1:1. А это противоречило эксперименту: 1 л азота и 1 л кислорода давали 2 л NO. На этом основании Берцелиус и большинство других химиков отвергли гипотезу Авогадро как не соответствующую экспериментальным данным!

Возродил гипотезу Авогадро и убедил химиков в ее справедливости в конце 1850-х молодой итальянский химик Станислао Канниццаро (1826–1910). Он принял для молекул газообразных элементов правильные (удвоенные) формулы: H 2 , O 2 , Cl 2 , Br 2 и т.д. и согласовал гипотезу Авогадро со всеми экспериментальными данными. «Краеугольный камень современной атомной теории, – писал Канниццаро, – составляет теория Авогадро... Эта теория представляет самый логичный исходный пункт для разъяснения основных идей о молекулах и атомах и для доказательства последних... Вначале казалось, что физические факты были в несогласии с теорией Авогадро и Ампера, так что она была оставлена в стороне и скоро забыта; но затем химики самой логикой их исследований и в результате спонтанной эволюции науки, незаметно для них, были приведены к той же теории... Кто не увидит в этом длительном и неосознанном кружении науки вокруг и в направлении поставленной цели решительного доказательства в пользу теории Авогадро и Ампера? Теория, к которой пришли, отправляясь от различных и даже противоположных пунктов, теория, которая позволила предвидеть немало фактов, подтвержденных опытом, должна быть чем-то большим, чем простой научной выдумкой. Она должна быть... самой истиной».

О жарких дискуссиях того времени написал Д.И.Менделеев: «В 50-х годах одни принимали О = 8, другие О = 16, если Н = 1. Вода для первых была НО, перекись водорода НО 2 , для вторых, как ныне, вода Н 2 О, перекись водорода Н 2 О 2 или НО. Смута, сбивчивость господствовали. В 1860 химики всего света собрались в Карлсруэ для того, чтобы на конгрессе достичь соглашения, однообразия. Присутствовав на этом конгрессе, я хорошо помню, как велико было разногласие, как с величайшим достоинством охранялось корифеями науки условное соглашение и как тогда последователи Жерара, во главе которых стал итальянский профессор Канниццаро, горячо проводили следствия закона Авогадро».

После того, как гипотеза Авогадро стала общепризнанной, ученые получили возможность не только правильно определять состав молекул газообразных соединений, но и рассчитывать атомные и молекулярные массы. Эти знания помогали легко рассчитать массовые соотношения реагентов в химических реакциях. Такие соотношения были очень удобны: измеряя массу веществ в граммах, ученые как бы оперировали молекулами. Количество вещества, численно равное относительной молекулярной массе, но выраженное в граммах, назвали грамм-молекулой или молем (слово «моль» придумал в начале 20 в. немецкий физико-химик лауреат Нобелевской премии Вильгельм Оствальд (1853–1932); оно содержит тот же корень, что и слово «молекула» и происходит от латинского moles – громада, масса с уменьшительным суффиксом). Был измерен и объе м одного моля вещества, находящегося в газообразном состоянии: при нормальных условиях (т.е. при давлении 1 атм = 1,013·10 5 Па и температуре 0°C) он равен 22,4 л (при условии, что газ близок к идеальному). Число же молекул в одном моле стали называть постоянной Авогадро (ее обычно обозначают N А). Такое определение моля сохранялось в течение почти целого столетия.

В настоящее время моль определяется иначе: это количество вещества, содержащего столько же структурных элементов (это могут быть атомы, молекулы, ионы или другие частицы), сколько их содержится в 0,012 кг углерода-12. В 1971 решением 14-й Генеральной конференции по мерам и весам моль был введен в Международную систему единиц (СИ) в качестве 7-й основной единицы.

Еще во времена Канниццаро было очевидно, что поскольку атомы и молекулы очень маленькие и никто их еще не видел, постоянная Авогадро должна быть очень велика. Со временем научились определять размеры молекул и значение N А – сначала очень грубо, затем все точнее. Прежде всего, им было понятно, что обе величины связаны друг с другом: чем меньше окажутся атомы и молекулы, тем больше получится число Авогадро. Впервые размеры атомов оценил немецкий физик Йозеф Лошмидт (1821–1895). Исходя из молекулярно-кинетической теории газов и экспериментальных данных об увеличении объема жидкостей при их испарении, он в 1865 рассчитал диаметр молекулы азота. У него получилось 0,969 нм (1 нанометр – миллиардная часть метра), или, как писал Лошмидт, «диаметр молекулы воздуха округленно равен одной миллионной части миллиметра». Это примерно втрое больше современного значения, что для того времени было хорошим результатом. Во второй статье Лошмидта, опубликованной в том же году, дается и число молекул в 1 см 3 газа, которое с тех пор называется постоянной Лошмидта (N L). Из нее легко получить значение N A , умножив на мольный объем идеального газа (22,4 л/моль).

Постоянную Авогадро определяли многими методами. Например, из голубого цвета неба следует, что солнечный свет рассеивается в воздухе. Как показал Рэлей, интенсивность рассеяния света зависит от числа молекул воздуха в единице объема. Измерив соотношение интенсивностей прямого солнечного света и рассеянного голубым небом, можно определить постоянную Авогадро. Впервые подобные измерения были проведены итальянским математиком и видным политическим деятелем Квинтино Селлой (1827–1884) на вершине горы Монте-Роза (4634 м), на юге Швейцарии. Расчеты, сделанные на основании этих и аналогичных им измерений, показали, что 1 моль содержит примерно 6·10 23 частиц.

Другой метод использовал французский ученый Жан Перрен (1870–1942). Он под микроскопом подсчитывал число взвешенных в воде крошечных (диаметром около 1 мкм) шариков гуммигута – вещества, родственного каучуку и получаемого из сока некоторых тропических деревьев. Перрен считал, что к этим шарикам применимы те же законы, которым подчиняются молекулы газов. В таком случае можно определить «молярную массу» этих шариков; а зная массу отдельного шарика (ее, в отличие от массы настоящих молекул, можно измерить), легко было рассчитать постоянную Авогадро. У Перрена получилось примерно 6,8·10 23 .

Современное значение этой постоянной N А = 6,0221367·10 23 .

Постоянная Авогадро настолько велика, что с трудом поддается воображению. Например, если футбольный мяч увеличить в N А раз по объему, то в нем поместится земной шар. Если же в N А раз увеличить диаметр мяча, то в нем поместится самая большая галактика, содержащая сотни миллиардов звезд! Если вылить стакан воды в море и подождать, пока эта вода равномерно распределится по всем морям и океанам, до самого их дна, то, зачерпнув в любом месте Земного шара стакан воды, в него обязательно попадет несколько десятков молекул воды, которые были когда-то в стакане. Если же взять моль долларовых бумажек, они покроют все материки 2-километровым плотным слоем…

2.Газовые законы

Зависимость между давлением и объемом идеального газа при постоянной температуре показана на рис. 1.

Давление и объем образца газа обратно пропорциональны, т. е. их произведения являются постоянной величиной: pV = const. Это соотношение может быть записано в более удобном для решения задач виде:

p1V1 = p2V2 (закон Бойля-Мариотта).

Представим себе, что 50 л газа (V1), находящегося под давлением 2 атм (p1), сжали до объема 25 л (V2), тогда его новое давление будет равно:

З
ависимость свойств идеальных газов от температуры определяется законом Гей-Люссака: объем газа прямо пропорционален его абсолютной температуре (при постоянной массе: V = kT, где k - коэффициент пропорциональности). Это соотношение записывается обычно в более удобной форме для решения задач:

Например, если 100 л газа, находящегося при температуре 300К, нагревают до 400К, не меняя давления, то при более высокой температуре новый объем газа будет равен

З
апись объединенного газового закона pV/T= = const может быть преобразована в уравнение Менделеева-Клапейрона:

где R - универсальная газовая постоянная, a - число молей газа.

У
равнение Менделеева-Клапейрона позволяет проводить самые разнообразные вычисления. Например, можно определить число молей газа при давлении 3 атм и температуре 400К, занимающих объем 70 л:

Одно из следствий объединенного газового закона: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Это закон Авогадро .

Из закона Авогадро в свою очередь вытекает также важное следствие: массы двух одинаковых объемов различных газов (естественно, при одинаковых давлении и температуре) относятся как их молекулярные массы:

m1/m2 = M1/M2 (m1 и m2 - массы двух газов);

M1IM2 представляет собой относительную плотность.

Закон Авогадро применим только к идеальным газам. При нормальных условиях трудно сжимаемые газы (водород, гелий, азот, неон, аргон) можно считать идеальными. У оксида углерода (IV), аммиака, оксида серы (IV) отклонения от идеальности наблюдаются уже при нормальных условиях и возрастают с ростом давления и понижением температуры.

3.Следствия из закона Авогадро

4.Задачи на закон Авогадро

Задача 1

При 25 °С и давлении 99,3 кПа (745 мм рт. ст.) некоторый газ занимает объем 152 см3. Найдите, какой объем займет этот же газ при 0 °С и давлении 101,33 кПа?

Решение

Подставляя данные задачи в уравнение (*) получим:

Vо = PVТо / ТРо = 99,3*152*273 / 101,33*298 = 136,5 см3.

Задача 2

Выразите в граммах массу одной молекулы СО2.

Решение

Молекулярная масса СО2 равна 44,0 а.е.м. Следовательно, мольная масса СО2 равна 44,0 г/моль. В 1 моле СО2 содержится 6,02*1023 молекул. Отсюда находим массу одной молекулы: m = 44,0 / 6,02-1023 = 7,31*10-23 г.

Задача 3

Определите объем, который займет азот массой 5,25 г при 26 °С и давлении 98,9 кПа (742 мм рт. ст.).

Решение

Определяем количество N2, содержащееся в 5,25 г: 5,25 / 28 = 0,1875 моль,

V, = 0,1875*22,4 = 4,20 дм3. Затем приводим полученный объем к указанным в задаче условиям: V = РоVоТ / РТо = 101,3*4,20*299 / 98,9*273 = 4,71 дм3.

Задача 4

Монооксид углерода ("угарный газ") - опасный загрязнитель атмосферы. Он снижает способность гемоглобина крови к переносу кислорода, вызывает болезни сердечно-сосудистой системы, снижает активность работы мозга. Из-за неполного сжигания природного топлива ежегодно на Земле образуется 500 млн. т CO. Определите, какой объем (при н.у.) займет угарный газ, образующийся на Земле по этой причине.

Решение

Запишем условие задачи в формульном виде:

m(CO) = 500 млн. т = 5 . 1014 г

M(CO) = 28 г/моль

VM = 22,4 л/моль (н.у.)

V (CO) = ? (н.у.)

В решении задачи используются уравнения, связывающие между собой количество вещества, массу и молярную массу:

m(CO) / M(CO) = n(CO),

а также количество газообразного вещества, его объем и молярный объем:

V (CO) / VM = n(CO)

Следовательно: m(CO) / M(CO) = V (CO) / VM, отсюда:

V(CO) = {VM . m(CO)} / M(CO) = {22,4 . 5 . 1014} / 28

[{л/моль} . г / {г/моль}] = 4 . 1014 л = 4 . 1011 м3 = 400 км3

Задача 5

Рассчитайте объем, который занимает (при н.у.) порция газа, необходимого для дыхания, если в этой порции содержится 2,69 . 1022 молекул этого газа. Какой это газ?

Решение .

Газ, необходимый для дыхания - это, конечно, кислород. Чтобы решить задачу, сначала запишем ее условие в формульном виде:

N(O2) = 2,69 . 1022 (молекул)

VM = 22,4 л/моль (н.у.)

NA = 6,02 . 1023 моль--1

V(O2) = ? (н.у.)

В решении задачи используются уравнения, связывающие между собой число частиц N(O2) в данной порции вещества n(O2) и число Авогадро NA:

n(O2) = N(O2) / NA,

а также количество, объем и молярный объем газообразного вещества (н.у.):

n(O2) = V(O2) / VM

Отсюда: V(O2) = VM . n(O2) = {VM . N(O2)} / NA = {22,4 . 2,69 . 1022} : {6,02 . 1023} [{л/моль} : моль--1] = 1,0 л

Ответ. Порция кислорода, в которой содержится указанное в условии число молекул, занимает при н.у. объем 1 л.

Задача 6

Углекислый газ объемом 1 л при нормальных условиях имеет массу 1,977 г. Какой реальный объем занимает моль этого газа (при н. у.)? Ответ поясните.

Решение

Молярная масса М (CO2) = 44 г/моль, тогда объем моля 44/1,977 = 22,12 (л). Эта величина меньше принятой для идеальных газов (22,4 л). Уменьшение объема связано с возрастанием взаимо действия между молекулами СО2, т. е. отклонением от идеальности.

Задача 7

Газообразный хлор массой 0,01 г, находящийся в запаянной ампуле объемом 10 см3, нагревают от 0 до 273oС. Чему равно начальное давление хлора при 0oС и при 273oС?

Решение


Мr(Сl2) =70,9; отсюда 0,01 г хлора соответствует 1,4 10-4 моль. Объем ампулы равен 0,01 л. Используя уравнение Менделеева-Клапейрона pV=vRT, находим начальное давление хлора (p1) при 0oС:

аналогично находим давление хлора (р2) при 273oС: р2 = 0,62 атм.

Задача 8

Чему равен объем, который занимают 10 г оксида углерода (II) при температуре 15oС и давлении 790 мм рт. ст.?

Решение

Задача 8

Рудничный газ или метан СН 4, - настоящее бедствие для шахтёров. Его взрывы в шахтах приводят к большим разрушениям и гибели людей. Г.Дэви изобрёл безопасную шахтёрскую лампу. В ней пламя было окружено медной сеткой и не вырывалось за её пределы, поэтому метан не нагревался до температуры воспламенения. Победу над рудничным газом считают гражданским подвигом Г.Дэви.
Если количество вещества метана при н.у. равно 23,88 моль, то каков объём этого газа,вычисленный в литрах?

Решение

V = 23,88 моль *22,4 л/моль = 534,91 л

Задача 9

Запах сернистого газа SO 2 знает каждый, кто хоть раз зажигал спичку. Этот газ хорошо растворяется в воде: в 1л воды можно растворить 42 л сернистого газа. Определите массу сернистого газа, которую можно растворить в 10 литрах воды.

Решение

ν = V/V m V=ν * V m m = ν * М

42 л SO 2 растворяется в 1 л воды

х л SO 2 - в 10 л воды

х = 42* 10/1 = 420 л

ν = 420л/ 22,4 л/моль = 18,75 моль

m = 18,75 моль * 64 г/моль = 1200 г

Задача 10

За час взрослый человек выдыхает примерно 40 г углекислого газа. Определите объём (н.у.) данной массы этого газа.

Решение

m = ν * М ν = m/M V=ν * V m

ν(СО 2) = 40 г / 44 г/моль = 0,91 моль

V(CO 2) =0,91 моль * 22,4 л/моль = 20,38 л

Заключение

Заслуги Авогадро как одного из основоположников молекулярной теории получили с тех пор всеобщее признание. Логика Авогадро оказалась безупречной, что подтвердил позже Дж.Максвелл расчетами на основе кинетической теории газов; затем были получены и экспериментальные подтверждения (например, основанные на исследовании броуновского движения), а также найдено, сколько частиц содержится в моле каждого газа. Эту константу – 6,022 1023 – назвали числом Авогадро, увековечив имя проницательного исследователя.

Список литературы

    Буцкус П.Ф. Книга для чтения по органической химии . Пособие для учащихся 10 классов/ сост. Буцкус П.Ф. – 2-е. изд., переработанное. –М.:Просвещение,1985.

    Быков Г.В. Амедео Авогадро: Очерк жизни и деятельности . М.: Наука, 1983

    Глинка Н.Л. Общая химия . Уч. пособие для вузов . – Л.: Химия, 1983.

    Крицман В.А. Роберт Бойль, Джон Дальтон, Амедео Авогадро. Создатели молекулярного учения в химии . М., 1976

    Кузнецов В.И. Общая химия. Тенденции развития . – М.: Высшая школа.

    Макаров К. А. Химия и здоровье. Просвещение,1985.

    Марио Льюцци. История физики . М., 1970

    Поллер З. Химия на пути в третье тысячелетие . Перевод с немецкого/ перевод и предисловие Васиной Н.А. – М.: Мир, 1982.

Физическая величина, равная количеству структурных элементов (которыми являются молекулы, атомы и т.п.) на один моль вещества, называется числом Авогадро. Официально принятое на сегодняшний день его значение составляет NA = 6,02214084(18)×1023 моль−1, оно было утверждено в 2010 году. В 2011 были опубликованы результаты новых исследований, они считаются более точными, но на данный момент официально не утверждены.

Закон Авогадро имеет огромное значение в развитии химии, он позволил вычислять вес тел, которые могут менять состояние, становясь газообразными или парообразными. Именно на основе закона Авогадро начала свое развитие атомно-молекулярная теория, следующая из кинетической теории газов.

Более того, с помощью закона Авогадро разработан способ получения молекулярной массы растворенных веществ. Для этого законы идеальных газов были распространены и на разбавленные растворы, взяв за основу мысль, что растворенное вещество распределится по объему растворителя, как газ распределяется в сосуде. Также закон Авогадро дал возможность определить истинные атомные массы целого ряда химических элементов.

Практическое использование числа Авогадро

Константа используется при расчетах химических формул и в процессе составления уравнений химических реакций. С помощью нее определяют относительные молекулярные массы газов и число молекул в одном моле любого вещества.

Через число Авогадро вычисляется универсальная газовая постоянная, она получается путем умножения этой константы на постоянную Больцмана. Кроме того, умножив число Авогадро и элементарный электрический заряд, можно получить постоянную Фарадея.

Использование следствий закона Авогадро

Первое следствие закона гласит: «Один моль газа (любого) при равных условиях будет занимать один объем». Таким образом, в нормальных условиях объем одного моля любого газа равен 22,4 литра (эта величина называется молярным объемом газа), а используя уравнение Менделеева-Клапейрона можно определить объем газа при любом давлении и температуре.

Второе следствие закона: «Молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму». Иными словами, при одинаковых условиях, зная отношение плотности двух газов, можно определить их молярные массы.

Во времена Авогадро его гипотеза была недоказуема теоретически, однако позволяла легко устанавливать экспериментальным путем состав молекул газа и определять их массу. Со временем под его эксперименты была подведена теоретическая база, и теперь число Авогадро находит применение

Амедео Авогадро был одним из итальянских физиков и химиков в девятнадцатом веке. Надо сказать, что образование он получал юридическое, но тяга к математике и физике подтолкнула его самостоятельно заняться изучением этих наук. И в этом деле он преуспел.

В тридцать лет Авогадро становится преподавателем физики в одном из университетских лицеев того времени. Позже он станет профессором математике в университете. Однако, Авогадро известен вовсе не своей успешной карьерой преподавателя точных наук, коих он освоил самостоятельно, он известен, прежде всего, как учёный, и как человек, высказавший одну из основополагающих гипотез физической химии. Он предположил, что если взять равные объёмы двух разных идеальных газов при одном и том же давлении и температуре, то в этих объёмах будет содержаться одинаковое число молекул. Впоследствии гипотеза подтвердилась, и сегодня может быть доказана при помощи теоретических выкладок. Сегодня это правило носит название закона Авогадро. Кроме того, в честь него было названо некое постоянное число, так называемое число Авогадро, о чём пойдёт речь ниже.

Число Авогадро

Все вещества состоят из каких-то структурных элементов, как правило, это либо молекулы, либо атомы, но важно не это. Что должно происходить, когда мы смешиваем два вещества, и они реагируют? Логично, что один структурный элемент, кирпичик, одного вещества должен прореагировать с одним структурным элементом, кирпичиком, другого вещества. Поэтому при полной реакции число элементов для обоих веществ должно быть одинаковым, хотя при этом могут отличаться и вес, и объёмы препаратов. Таким образом, любая химическая реакция должна содержать одинаковое число структурных элементов каждого вещества, либо эти цифры должны быть пропорциональны какому-то числу. Совершенно неважно значение этого числа, но в дальнейшем за основу решили взять двенадцать грамм углерода-12 и подсчитать в нём количество атомов. Оно составляет порядка шести помноженной на десять в двадцать третьей степени. Если вещество содержит такое количество структурных элементов, то говорят об одном моле вещества. Соответственно все химические реакции в теоретических выкладках записываются в молях, то есть смешивают моли веществ.

Как говорилось выше, значение числа Авогадро, в принципе неважно, однако при этом его определяют физическим способом. Поскольку опыты на данный момент имеют недостаточную точность, то данное число всё время уточняется. Можно, конечно, надеется, что когда-нибудь оно будет подсчитано абсолютно точно, но пока до этого далеко. На сегодняшний день последнее уточнение было сделано в 2011 году. Кроме того, в том же году была принята резолюция о том, как грамотно записывать данное число. Поскольку оно всё время уточняется, то его на сегодняшний день записывают как 6.02214Х помноженное на десять в двадцать третьей степени. Такое количество структурных элементов содержится в одном моле вещества. Буква «Х» в данной записи говорит о том, что число уточняется, то есть значение Х в будущем будет уточняться.

Закон Авогадро

В самом начале данной статьи мы упомянули Закон Авогадро. Это правило говорит об одинаковом количестве молекул. В таком случае имеет смысл связать этот закон с числом Авогадро или молем. Тогда закон Авогадро будет утверждать, что моль каждого идеального газа при одной и той же температуре и давление занимает одинаковый объём. Подсчитано, что при нормальных условиях этот объём составляет порядка двадцати четырёх с половиной литров. Есть точное значение этой цифры, 22.41383 литров. И поскольку процессы, происходящие при нормальных условиях, важны и встречаются очень часто, то есть и название для данного объёма, молярный объём газа.

В теоретических выкладках очень часто, рассматривается молярные объёмы газа. Если есть необходимость перейти к другим температурам или давление, то объём, конечно, изменится, однако есть соответствующие формулы из физики, которые позволяют его подсчитать. Просто надо всегда помнить, что моль газа всегда относится к нормальным условиям, то есть это какая-то конкретная температура и какое-то конкретное давление, и согласно постановлению 1982 года при нормальных условиях давление газа составляет десять в пятой степени Паскаль, а температура 273.15 Кельвина.

Помимо очевидного прикладного значения двух понятий, что были рассмотрены выше, есть и более интересные последствия, которые из них вытекают. Так, зная плотность воды и, взяв один моль её, мы можем оценить размеры молекулы. Здесь мы исходим из того, что нам известна атомарная масса молекул воды и углерода. Таким образом, если мы берём для углерода двенадцать грамм, то масса воды определяется согласно пропорциональной зависимости, она равна восемнадцати граммам. Поскольку плотность воды определить несложно, необходимых данных для оценки размера молекулы воды теперь достаточно. Вычисления показывают, что размер молекулы воды порядка десятых долей нанометра.

Интересно и дальнейшее развитие закона Авогадро. Так, Вант-Гоф распространил законы идеальных газов на растворы. Суть сводится к аналогии законов, но в итоге это дало возможность узнать молекулярные массы веществ, которые по-другому получить было бы очень трудно.

Принцип, который в 1811 году сформулировал итальянский химик Амадео Авогадро (1776-1856), гласит: при одинаковых температурах и давлении в равных объемах газов будет содержаться одинаковое число молекул, независимо от их химической природы и физических свойств. Это число является физической константой, численно равной количеству молекул, атомов, электронов ионов или других частиц, содержащихся в одном моле. Позднее гипотеза Авогадро, подтвержденная большим числом экспериментов, стала считаться для одним из основных законов, вошедшим в науку под названием закон Авогадро, и его следствия все основаны на утверждении, что моль любого газа, в случае одинаковых условий, будет занимать одинаковый объем, называемый молярным.

Сам предполагал, что физическая константа является очень большой величиной, но только множество независимых методов, уже после смерти ученого, позволили экспериментально установить число атомов, содержащееся в 12 г (является атомной единицей массы углерода) или в молярном объеме газа (при Т = 273,15 К и р =101,32 кПа), равном 22,41 л. Константу принято обозначать, как NA или реже L. Она названа в честь ученого — число Авогадро, и равняется оно, примерно, 6,022 . 1023. Это и есть число молекул любого газа, находящегося в объеме 22,41 л, оно одинаково и для легких газов (водорода), и для тяжелых газов Закон Авогадро математически можно выразить: V / n = VM, где:

  • V — объем газа;
  • n — количество вещества, которое является отношением массы вещества к его массе молярной;
  • VM — константа пропорциональности или молярный объем.

Амадео Авогадро принадлежал к благородному семейству, проживавшему в северной части Италии. Он родился 09.08.1776 в Турине. Его отец — Филиппо Авогадро — был служащим судебного ведомства. Фамилия на венецианском средневековом диалекте означала адвоката или чиновника, который взаимодействовал с людьми. По существовавшей в те времена традиции, должности и профессии передавались по наследству. Поэтому в 20 лет Амадео Авогадро получил степень, став доктором законоведения (церковного). Физику и математику он начал самостоятельно изучать в 25 лет. В своей научной деятельности занимался изучением и исследованиями в области электрохимии. Однако в историю науки Авогадро вошел, сделав к атомистической теории очень важное дополнение: ввел понятие о мельчайшей частице вещества (молекуле), способной существовать самостоятельно. Это было важно для объяснения простых объемных отношений между газами, вступившими в реакцию, а закон Авогадро стал иметь большое значение для развития науки и широко применяться на практике.

Но произошло это не сразу. Некоторыми химиками закон Авогадро был признан через десятилетия. Оппонентами итальянского профессора физики били такие знаменитые и признанные научные авторитеты, как Берцелиус, Дальтон, Дэви. Их заблуждения привели к многолетним спорам о химической формуле молекулы воды, так как существовало мнение, что ее следует записывать не H2O, а HO или H2O2. И только закон Авогадро помог установить состав и других простых и сложных веществ. Амадео Авогадро утверждал, что молекулы простых элементов состоят из двух атомов: O2, H2, Cl2, N2. Из чего следовало, что реакцию между водородом и хлором, в результате которой будет образован хлороводород, можно записать в виде: Cl2 + H2 → 2HCl. При взаимодействии одной молекулы Cl2 с одной молекулой H2, образуются две молекулы HCl. Объем, который будет занимать HCl, должен быть в два раза больше объема каждого, из вступивших в эту реакцию, компонентов, то есть должен равняться их суммарному объему. Только начиная с 1860 года, начал активно применяться закон Авогадро, и следствия из него позволили установить истинные значения атомных масс некоторых химических элементов.

Одним из основных выводов, сделанных на его основании, стало уравнение, описывающее состояние идеального газа: p .VM = R . T, где:

  • VM — молярный объем;
  • p — давление газа;
  • T — абсолютная температура, К;
  • R — универсальная газовая постоянная.

Объединенный также является следствием закона Авогадро. При постоянной массе вещества выглядит, как (p . V) / T = n . R = const, а его форма записи: (p1 . V1) / T1 = (p2 . V2) / T2 позволяет делать расчеты при переходе газа из одного состояния (обозначено индексом 1) в другое (с индексом 2).

Закон Авогадро позволил сделать и второй немаловажный вывод, открывший путь для экспериментального определения тех веществ, которые при переходе в газообразное состояние не разлагаются. M1 = M2 . D1, где:

  • M1 — масса молярная для первого газа;
  • M2 — масса молярная для второго газа;
  • D1 — относительная плотность первого газа, которую устанавливают по водороду или воздуху (по водороду: D1 = M1 / 2, по воздуху D1 = M1 / 29, где 2 и 29 — это молярные массы водорода и воздуха соответственно).

Урок посвящен изучению закона Авогадро, который применятся только для газообразных веществ и позволяет сравнивать число молекул в порциях газообразных веществ. Вы узнаете, как на основании данного закона можно сделать вывод о составе молекул газа, познакомитесь с моделями молекул некоторых веществ.

Тема: Первоначальные химические представления

Урок: Закон Авогадро. Состав молекул

В твердых телах, по сравнению с жидкостями и тем более газами, частицы вещества находятся в тесной взаимосвязи, на небольших расстояниях. В газообразных же веществах расстояния между молекулами настолько велики, что практически исключает взаимодействие между ними.

Рис. 1. Модели строения вещества в разных агрегатных состояниях

При отсутствии взаимодействия между молекулами их индивидуальность не проявляется. Значит, можно считать, что между молекулами в любых газах расстояния одинаковые. Но при условии, что эти газы находятся в одинаковых условиях – при одинаковых давлении и температуре.

Раз расстояния между молекулами газов равны, значит, равные объемы газов содержат равное число молекул. Такое предположение высказал в 1811 г. итальянский ученый Амедео Авогадро. Впоследствии его предположение было доказано и названо законом Авогадро.

Свою гипотезу Авогадро использовал для объяснения результатов опытов с газообразными веществами. В процессе рассуждений он смог сделать важные выводы о составе молекул некоторых веществ.

Рассмотрим результаты экспериментов, на основании которых Авогадро смог смоделировать молекулы некоторых веществ.

Вы уже знаете, что при пропускании через воду электрического тока, вода разлагается на два газообразных вещества - водород и кислород.

Опыт по разложению воды проведем в электролизере. При пропускании электрического тока через воду на электродах начнут выделяться газы, которые вытеснят воду из пробирок. Газы получатся чистыми, потому что воздуха в пробирках, заполненных водой, нет. Причем объем выделившегося водорода будет в 2 раза больше, чем объем выделившегося кислорода.

Какой вывод сделал из этого Авогадро? Если объем водорода в два раза больше объема кислорода, значит, молекул водорода образовалось тоже в 2 раза больше. Следовательно, в молекуле воды на два атома водорода приходится один атом кислорода.

Рассмотрим результаты других опытов, которые позволяют сделать предположение о строении молекул веществ. Известно, что при разложении 2 л аммиака образуется 1 л азота и 3 л водорода (Рис. 2).

Рис. 2. Соотношение объемов газов, участвующих в реакции

Отсюда можно сделать вывод, что в молекуле аммиака на один атом азота приходится три атома водорода. Но почему тогда для реакции потребовалось не 1л аммиака, а 2л?

Если воспользоваться моделями молекул водорода и аммиака, которые предложил Д. Дальтон, то получил результат, противоречащий эксперименту, т.к. из 1 атома азота и трех атомов водорода получится только 1 молекула аммиака. Таким образом, по закону Авогадро объем разложившегося аммиака в этом случае будет равен 1 л.

Рис. 3. Объяснение результатов эксперимента с позиций теории Д. Дальтона

Если же предположить, что каждая молекула водорода и азота состоит из двух атомов, то у модели не будет противоречия с экспериментальным результатом. В этом случае одна молекула азота и три молекулы водорода образуются из двух молекул аммиака.

Рис. 4. Модель реакции разложения аммиака

Рассмотрим результаты еще одного опыта. Известно, что при взаимодействии 1 л кислорода с 2 л водорода образовалось 2 л паров воды (т.к. реакцию проводят при температуре больше 100 С). Какой вывод можно сделать о составе молекул кислорода, водорода и воды?Такое соотношение можно объяснить, если предположить, что молекулы водорода и кислорода состоят из двух атомов:

Рис. 5. Модель реакции между водородом и кислородом

Из двух молекул водорода и 1 молекулы кислорода образуется 2 молекулы воды.

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.26-27)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§11)

4. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.67 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. №45 из Сборника задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006.



Статьи по теме: