Как пользоваться макетной платой (breadboard). Полезные советы по использованию беспаечных макетных плат Монтаж схем на макетной плате с пайкой

При конструировании и сборке новых электронных схем обязательно требуется их отладка. Она проводится на временной монтажной плате, позволяющей достаточно свободно расположить компоненты с целью обеспечения возможности быстрой и удобной их замены, проведения контрольно-измерительных работ.

Детали в такой плате могут крепиться при помощи пайки, а сама площадка будет называться макетной платой. Чтобы лишний раз не подвергать компоненты механическим и тепловым воздействиям, монтажниками и конструкторами используется беспаечная макетная плата. Часто радиолюбители называют это приспособление макеткой.

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.

Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Качественные макетные платы допускают монтаж и разборку при сохранении прочного и надежного соединения между деталями до 50 000 раз.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

Как правильно пользоваться

Чтобы успешно и рационально пользоваться макеткой, необходимо иметь еще такие приспособления:

  • несколько монтажных проводов диаметром 0,4-0,7 мм для устройства различных перемычек и подключения питания;
  • кусачки-бокорезы;
  • плоскогубцы;
  • пинцет.

Паяльник при монтаже без пайки, разумеется, не нужен, но он может понадобиться, чтобы припаять провода к клеммам источника питания, если отсутствуют разъемные изделия. Иногда пайку придется применить для осуществления экранирования.

Зная расположение токопроводящих дорожек на макетной плате, легко осуществить монтаж любой схемы и, подключив ее к источнику питания, проверить работоспособность. Для сборки нужно только вставить выводы компонентов в зажимы разъемов и соединить их в нужной последовательности.

При этом необходимо четко представлять расположение токопроводящих дорожек, чтобы не допустить короткого замыкания. При необходимости осуществления контактов между дорожками на макетной плате используются соединители.

В случае если выводы деталей по диаметру не подходят под монтажные отверстия, к ним можно подпаять или подмотать отрезки подходящего провода. Микросхемы и компоненты в BAG-корпусах устанавливаются в центре платы.

Подготовка и экранирование

Для того чтобы работать с макетной платой, особенно, если она предназначена для монтажа без пайки, сначала необходимо произвести подготовительные работы. Это тем более актуально, если плата не использовалась длительное время.

Подготовка включает в себя очистку макетной платы от пыли. Для этого можно воспользоваться мягкой кистью, а для очистки отверстий можно использовать пылесос или баллончик со сжатым воздухом.

Следующим этапом необходимо прозвонить мультиметром токопроводящие дорожки, чтобы избежать лишних трат времени на поиск возможной потери контакта при монтаже схемы.

При отладке устройств, они могут работать некорректно из-за различных помех и наведенных токов, возникающих при работе схемы. Для устранения этого явления необходимо применить экранирование макетной платы.

Для этого используют металлическую пластину, прикрепленную снизу и соединенную пайкой с общей шиной, которая впоследствии станет отрицательной.

Для успешного использования макетной платы под пайку и осуществления быстрой отладки целесообразно приобретать несколько макеток разных размеров.

Во-первых, это позволит собирать сложные схемы отдельными блоками, отлаживая каждый, и позже соединять в одно устройство. Во-вторых, так можно собрать дополнительные устройства, которые могут понадобиться для контроля работы основной схемы.

Приобретать макетную плату лучше с комплектом соединительных проводов. Их еще называют «джамперами».

Но в некоторых случаях можно сэкономить значительную сумму, если купить плату для беспаечного монтажа, неукомплектованную соединителями. Их в этом случае можно изготовить самостоятельно из подходящего провода.

Идеально подойдет кабель КСВВ 4-0,5, используемый при устройстве систем пожарной сигнализации. Этот кабель имеет 4 изолированных жилы из тонкого медного провода диаметром 0,5 мм. Одного метра кабеля будет достаточно, чтобы получить много соединительных перемычек.

При монтаже всегда нужно надежно подключать все выводы полупроводников и микросхем. Даже, если какие-либо выводы не используются, их необходимо подключить к общей шине, чтобы избежать возникновения наведенных токов.

При использовании макетных плат можно применять только слаботочные детали, работающие от напряжения не более 12 В. Подключать к макетной плате переменный ток напряжением 220 В от бытовой электросети запрещено.

Правильное использование макетной платы для монтажа без пайки существенно упростит сборку всей схемы и снизит затраты на изготовление устройства, в котором такая схема будет использоваться.

Breadboard (макетная (монтажная) беспаечная плата) – один из основных инструментов как для познающих основы схемотехники, так и для профессионалов.

В этой статье вы познакомитесь с тем, где и как использовать breadboard и какие они бывают. После ознакомления с приведенными основами, вы сможете собрать свою электросхему с использовнием макетной беспаечной платы.

Исторический экскурс

В начале 1960 создание прототипов микросхем выглядело примерно так:

На платформе устанавливались металлические стойки, на которые наматывались проводники. Процесс прототипирования был достаточно длительным и сложным. Но человечество не стоит на месте и был придуман более элегантный подход: Беспечные монтажные платы - breadboards!

Если знать, что bread переводится как хлеб, а board - доска, то одна из ассоциаций, которая может возникнуть при упоминании слова breadboard - это деревянная подставка, на которой нарезают хлеб (как на рисунке ниже). В принципе, вы недалеки от истины.


Так откуда появилось это название - breadboard? Много лет назад, когда электронные компоненты были большими и неуклюжими, многие "самодельщики" в своих "гаражах" собирали схемы с использованием подставок для нарезки хлеба (пример показан на рисунке ниже).


Постепенно электронные компоненты становились меньше и получилось свести прототипирование к использованию более ли менее стандартных проводников, коннекторов и микросхем. Подход несколько изменился, но название перекочевало.

Breadboard - это беспаечная монтажная плата. Это отличная платформа для разработки прототипов или временных электросхем, с использованием которой вам не понадобится паяльник и все связанные с этим проблемы и затраты времени на распайку.

Прототипирование (prototyping) - это процесс разработки и тестирования модели вашего будущего устройства. Если вы не знаете как будет себя вести ваше устройство при определенных заданных условиях, лучше сначала создать прототип и проверить его работоспособность.

Беспаечные монтажные платы используют как для создания простеньких электросхем, так и для сложных прототипов.

Еще одна сфера применения breadbord"ов - проверка новых деталей и компонентов - например, микросхем (ICs).

Как уже упоминалось выше, созданная вами электросхема вполне может меняться и в этом основное преимущество использования беспаечных монтажных плат. Например, в любой момент вы можете включить в схему дополнительный светодиод, который будет реагировать на те или иные условия в вашей цепи. На рисунке ниже показан пример электросхемы для проверки работоспособности чипа Atmega, который используется в платах Arduino Uno.


“Анатомия беспаечных монтажных плат”


Лучший способ объяснить как именно работает breadboard - выяснить как плата выглядит изнутри. Рассмотрим на примере миниатюрной платы.

На рисунке ниже показан breadboard, на котором снято основание на нижней части. Как вы видите, на плате установлены ряды металлических пластин.


Каждая металлическая пластина имеет вид, приведенный на рисунке ниже. То есть, это не просто пластина, а пластина с клипсами, которые прячутся в пластиковой части монтажной платы. Именно в эти клипсы вы подключаете ваши провода.


То есть, как только вы подключили проводник к одному из отверстий в отдельном ряде, этот контакт будет одновременно подключен и к остальным контактам в отдельном ряде.

Обратите внимание, что на одной рельсе пять клипс. Это общепринятый стандарт. Большинство беспаечных монтажных плат реализуются именно таким образом. То есть, вы можете подключить до пяти компонентов включительно к отдельной рельсе на breadboard"е и они будут связаны между собой. Но ведь на плате десять отверстий в ряде!? Почему мы ограничены пятью контактами? Вы, наверное, обратили внимание, что по центру монтажной платы есть отдельная рельса без пинов? Эта рельса изолирует пластины друг от друга. Зачем это делается, мы разберем немного позже. Сейчас важно запомнить, что рельсы изолированы друг от друга и мы ограничены пятью связанными контактами, а не десятью.

На рисунке ниже показан светодиод, установленный на беспаечную монтажную плату. Обратите внимание, что две ноги светодиода установлены на изолированных параллельных рельсах. В результате не будет замыкания контактов.


Давайте теперь рассмотрим breadboard больших размеров. На таких платах, как правило, предусматривают две вертикально расположенные рельсы. Так называемые рельсы для питания.


Эти рельсы аналогичны по исполнению с горизонтальными, но при этом соединены друг с другом по всей длине. При разработке проекта вам часто необходимо питание для многих компонентов. Именно эти рельсы используются для питания. Обычно их отмечают "+" и "-" и двумя разными цветами - красным и голубым. Как правило, рельсы соединяют между собой, чтобы получить одинаковое питание по обоим сторонам макетки (смотрите на рисунке ниже). Кстати, нет необходимости подключать плюс именно к рельсе с обозначением "+", это исключительно подсказка, которая поможет вам структурировать ваш проект.


Центральная рельса без контактов (для DIP-микросхем)

Центральная рельса без контактов изолирует две стороны беспаечной монтажной платы. Помимо изоляции, эта рельса выполняет вторую важную функцию. Большинство микросхем (ICs), изготавливаются в стандартных размерах. Для того, чтобы они занимали минимум места на монтажной плате, используется специальный форм-фактор под названием Dual in-line Package, или сокращенно - DIP.

У DIP-микросхем контакты расположены по двум сторонам и отлично садятся на две рельсы по центру breadboard"а. Именно в этом случае изоляция контактов - отличный вариант, который позволяет сделать разводку каждого контакта микросхемы на отдельную рельсу с пятью контактами.

На рисунке ниже показана установка двух DIP микросхем. Сверху - LM358, ниже - микроконтроллер ATMega328, который используется во многих платах Arduino .


Строки и столбцы (горизонтальные и вертикальные рельсы)

Наверняка вы обращали внимание, что на беспаечных монтажных платах нанесены числа и буквы возле строк (горизонтальных рельс) и столбцов (вертикальных рельс). Эти обозначения нанесены исключительно для удобства. Прототипы ваших устройств очень быстро обрастают дополнительными компонентами, а одна ошибка в подключении приводит к неработоспособности электрической схемы или даже к выходу из строя отдельных компонентов. Гораздо проще подключить контакт к рельсе, которая отмечена цифрой и буквой, чем отсчитывать контакты "на глаз".

Кроме того, во многих инструкциях номера рельс тоже указываются, что значительно облегчает сборку вашей схемы. Но не забывайте, что даже если вы используете инструкцию, номера контактов на макетке не обязаны совпадать!

Колки на макетках

Некоторые монтажные платы изготавливаются на отдельной подставке, на которой установлены специальные колки. Эти колки используются для подключения источника питания к вашему breadboard "у. Более детально подобные макетки рассмотрены ниже.

Другие фичи

Когда вы разрабатываете электрическую схему, не обязательно ограничиваться одним breadboard "ом. На многих монтажных платах предусмотрены специальные пазы и выступы по бокам. С помощью этих слотов, вы можете соединить несколько макеток и сформировать необходимое для вас рабочее пространство. На рисунке ниже показаны четыре мини breadboard "а, соединенных вместе.


На некоторых монтажных беспаечных платах предусмотрена самоклеющаяся основа на задней части. Очень полезная фича, если вы хотите надежно установить макетку на какой-то поверхности.

На некоторых больших макетках вертикальные рельсы, на которые подается питание, состоят из двух изолированных друг от друга частей. Очень удобно, если в вашем проекте надо два разных источника питания: например, 3.3 В и 5 В. Но надо быть предельно осторожным и перед использованием breadboard "а подключить один источник питания и проверить напряжение на двух концах вертикальной рельсы с помощью мультиметра.

Подаем питание на breadboard

Подавать питание на breadboard можно по разному.

Если вы работаете с Arduino, вы можете соединить пины 5 В (3.3 В) и Gnd с двумя разными рельсами макетки. На рисунке ниже показано подключение контакта Gnd с Arduino к рельсе мини макетной монтажной платы.


Как правило, Arduino запитывается от USB порта на компьютере или от внешнего источника питания, которые мы можем предать на рельсу макетки.

Монтажные беспаечные платы с колками

Выше уже упоминалось, что на некоторых монтажных платах устанавливают колки для подключения внешнего источника питания.

Для начала работы, необходимо подключить колки к рельсам на breadboard "е с помощью проводников. Колки не связаны ни с одной рельсой, что дает вам пространство для маневра: на какую именно рельсу подавать питание и землю.

Для подключения провода к колку, открутите пластиковый колпачок и поместите конец провода в отверстие (смотрите на фото ниже). После этого, закрутите колпачок обратно.


Как правило, вам будут необходимы два колка: для питания и для земли. Третий колок можно использовать, если вам понадобится альтернативный источник питания.

Колки соединены с рельсами, но это не конец. Теперь надо подключить внешний источник питания. Вариантов несколько.

Можно использовать специальные джеки, как это показано на фото ниже.


Можно использовать "крокодилов" и даже обычные проводники. Зависит исключительно от ваших предпочтений и деталей, которые есть у вас в наличии.

Один из достаточно универсальных вариантов - распаять контакты на джеке под ваш источник питания и подключить провода к колкам, как это показано ниже.


Можно использовать и специальные модули-стабилизаторы питания, которые выпускаются под беспаечные монтажные платы. Некоторые модули дают возможность запитывать макетку от USB порта, некоторые изготавливаются со стандартными джеками под блоки питания. На большинстве подобных модулей стабилизаторов питания предусмотрена регулировка напряжения. Например, можно выбрать напряжение, которое пойдет на рельсу: 3.3 В или 5 В. Один из вариантов подобных модулей регуляторов/стабилизаторов напряжения показан на рисунке ниже.


Простая электросхема с использованием беспаечной монтажной платы

Основы работы с беспаечной монтажной платой мы рассмотрели. Давайте рассмотрим пример простой электрической цепи, в которой будем использовать breadboard.

Ниже приведен список узлов, которые понадобятся для нашей цепи. Если у вас нет именно этих деталей, можете заменить их на аналогичные. Не забывайте: одну и ту же электрическую цепь можно собрать, используя разные компоненты.

  • Breadboard
  • Регулятор/стабилизатор напряжения
  • Блок питания
  • Светодиоды
  • Резисторы на 330 Ом 1/6 Вт
  • Коннекторы
  • Тактовые кнопки (квадрат 12 мм)

Собираем электрическую цепь

Фотография собранной электрической цепи с использованием беспаечной монтажной платы приведена ниже. В проекте используются две кнопки, резисторы и светодиоды. Обратите внимание, что две аналогичные цепи собраны по разному.


Красная плата слева - стабилизатор напряжения, который обеспечивает питание 5 В на рельсах макетки.

Схема собирается следующим образом:

  • К позитивной ноге (аноду) светодиода подключается питание 5 В от соответствующей рельсы breadboard "а.
  • Отрицательная нога (катод) светодиода, подключена к резистору 330 Ом.
  • Резистор подключен к тактовой кнопке.
  • Когда кнопка нажата, цепь замыкается с землей и светодиод зажигается.

При прототипировании важно разбираться в электрических схемах. Давайте кратко рассмотрим электрическую схему нашей небольшой электрической цепи.

Электрическая схема - это схематическое изображение, в котором используются универсальные обозначения для отдельных электрических компонентов и отображается последовательность их подключения. Подобные элекрические схемы можно получить, используя программу Fritzing .

Электрическая схема нашего проекта показана на рисунке ниже. Питание 5 В изображено стрелкой в верхней части схемы. 5 В подключается к светодиоду (треугольник и горизонтальная линия со стрелками). После этого светодиод подключается к резистору (R1). После этого установлена кнопка (S1), которая замыкает цепь. И в конце цепи - земля (Gnd - горизонтальная линия снизу).


Наверняка возникает вопрос: а зачем нам электрические схемы, если можно просто создать принципиальную схему подключения с использованием того же Fritzing? Например, как на подобном рисунке:


Как уже упоминалось выше, собрать одну и ту же схему можно по-разному, а вот электрическая принципиальная схема останется одинаковой. То есть, практическая имплементация может отличаться, что дает вам пространство для фантазии и более общее понимание процессов, которые происходят в вашем проекте.

Если в первой части статьи упор сделан на обзор макетных плат и описание их устройства, то сейчас рассмотрим некоторые полезные тонкости и ньюансы, которые нужно знать при работе с такими макетными платами.

Если в инструкции беспаечной макетной платы сказано, что диаметр провода, вставляемого в контакты 0,4 - 0,7 мм, то не следует пытаться вставлять выводы деталей, которые толще указанной величины. Это приведет к ослаблению и износу контактов. Если же возникает необходимость применения таких деталей, то лучше припаять к толстым выводам проволочки указанного диаметра, или просто обмотать. Естественно, проволочка должна быть без изоляции.

Беспаечные макетные платы продаются в двух комплектациях: с проводами - джамперами и без них. В первом варианте плата получается несколько дороже, но вовсе не беда, если удалось купить отдельно плату, - всегда можно что-нибудь приспособить.

Коммутационные провода, конечно, продаются отдельно, но если нет желания или возможности их купить, то вполне подойдет провод КСВВ 4*0,4, используемый для монтажа .

Такой провод содержит 4 изолированных жилы с диаметром как раз 0,4 мм. Изоляция с провода легко снимается бокорезами или ножом, а сами жилы не имеют лакового покрытия.

В случае необходимости макетирования сложного устройства его отдельные функционально завершенные части лучше собрать на отдельных макетных платах небольших размеров, после чего из полученных узлов собрать всю конструкцию.

Иногда случается, что одно устройство еще не собрано, а требуется почему-то срочно собрать другое, совсем новое. И вот тут начинается! Надо разобрать собранную, еще не отлаженную схему, которую потом, возможно, придется собирать еще раз. А ведь единственный невосполнимый ресурс это время, которое теряется на эти бессмысленные сборки - разборки. Поэтому лучше не скупиться, а приобрести несколько макетных плат, дело пойдет быстрее.

Не следует забывать о том, что макетные платы рассчитаны на слаботочную аппаратуру, - и . Поэтому ни в коем случае недопустимо подавать на них напряжение сети - 220 В. Это может привести к перегреву контактов и пробою изоляции, а что будет после этого всем, наверно, известно.

Но даже и в транзисторах и микросхемах может случиться короткое замыкание, что вызовет перегрев этих элементов, приведет к нагреву контактов и расплавлению пластмассового основания платы. Поэтому при первом включении схемы желательно померить потребляемый ток или хотя бы проконтролировать пальцем температуру всех элементов.

Общее правило, не только для макетных плат. Сначала устанавливаются компоненты не подверженные воздействию статического электричества: , и .

На макетной плате также кроме деталей устанавливаются соединительные провода. Соединительные провода лучше устанавливать пинцетом или маленькими плоскогубцами. Этими же инструментами проводить и демонтаж проводов.

Как и во всех подобных случаях проверить плату на правильность монтажа, на отсутствие коротких замыканий или неконтактов. Неиспользуемые выводы микросхем не оставлять «висеть в воздухе», а подключать либо к общему проводу либо к шине питания. Свободные входы приведут к появлению на выходах таких элементов просто напросто помех, которые будут распространяться по всей схеме и ее наладка станет намного проблематичней.

Наверное, здесь же придется отметить, что макетные платы имеют большую емкость монтажа за счет длинных соединительных проводов, а также множества контактов. Поэтому слишком высокочастотные схемы на таких платах работать будут плохо, а может, не будут совсем.

Чтобы избежать влияния длинных проводников желательно выводы питания микросхем шунтировать керамическими конденсаторами небольшой емкости, как это делается на печатных платах.

Проверяя правильность монтажа, можно воспользоваться «дубовыми» микросхемами ТТЛ, которые практически не чувствительны к статике. Можно, конечно, обойтись и без них, но не очень удобно просовывать щупы мультиметра в отверстия на плате, удобнее касаться ножек микросхем. После завершения проверки и устранения неточностей «учебные» микросхемы следует заменить настоящими.

При использовании микросхем структуры КМОП для защиты от статики очень желательно применение антистатических заземляющих браслетов. Если таких в наличии нет, то можно рекомендовать использование проволочной мочалки для мытья сковородок. Такая мочалка имеет форму кольца, куда можно просунуть руку. С помощью гибкого провода через резистор сопротивлением не более 1МОм подключиться к заземлению.

После проверки схемы можно вставить в плату упомянутые микросхемы КМОП. При настройке схемы, замене деталей, либо внесении изменений защитный антистатический браслет лучше не снимать.

Всем привет. Сегодня мы поговорим о беспаечной макетной плате или о breadboard , как называют её буржуи. Данная плата, если можно так выразится, входит в список обязательных инструментов, что должны быть у электронщика (будь то юный мозгочинчик, что только делает первые неуверенные шажки или прожженный и повидавший жизнь мозгочин).

Знания о том, какие бывают макетные платы, как и где применяют такие инструменты, помогут вам при разработке и наладке собственных проектов различных электронных самоделок .

Первые платы выглядели так:

На основу крепились металлические стойки, на которые в последствии закреплялись (просто наматывались) провода и контактные выводы элементов.

Хорошо, что технический прогресс не стоит на месте – ведь благодаря его влиянию мы можем пользоваться вот такими замечательными инструментами.

В противовес беспаечной макетной плате можно выставить вот такие (они значительно дешевле и изготавливаются исходя из необходимых параметров).

Однако при монтаже на беспаечной плате вам не понадобится паяльник/припой. Кроме этого вы избежите трудностей связанных с распайкой деталей по поверхности платы.

Правилом хорошего тона, да и здравого смысла, всегда было и остается прототипирование электронных схем. Важно знать, как поведёт себя устройство при тех или иных определенных параметрах, до сборки готового устройства.


Кроме этого с помощью беспаечной платы можно производить проверку работоспособности новый компонентов и радиодеталей.

Рассмотрим строение беспаечной платы

Посмотрим на рисунок платы. Она состоит из рядов металлических пластин (рельсов).

Рельса в свою очередь состоят из зажимов, в которые и происходит установка «ножек» радиодеталей. Все 5 отверстий в ряду соединены воедино.

Теперь обратим наш взор на две вертикальные/горизонтальные полосы (зависит в каком положении смотреть), что расположены отдельно (по краям) – это пластины питания. Все гнезда одной длинной пластины соединены друг с другом.

Центральный паз изолирует стороны платы. Ширина данной полосы закреплена стандартом. Она позволяет устанавливать DIP-микросхемы таким образом, чтобы каждый вывод был установлен в отдельную рельсу и позволял подключит до 4 внешних выводов.

На платах нанесены буквенные и цифровые последовательности. Данные обозначения помогают ориентироваться при монтаже компонентов, чтобы исключить ошибочное подключение (что может закончится неработоспособностью схемы или выходом из строя отдельных деталей).

Также выпускают платы, которые изготавливаются на отдельных подставках со специальными прижимными клеммами. Они используются для подключения источника питания к плате.

Если вы обратили внимание на некоторых платах есть специальные пазы и выступы (они расположены по бокам). С их помощью можно объединять платы и создавать рабочую поверхность любого размера.

Также на некоторых платах на задней части нанесена самоклеющаяся основа.

На рисунке представлен способ «запитки» платы от Arduino.

Если же вам в руки попала плата с клеммами для подачи питания, необходимо подключить их к линиям на макетной плате с помощью проводников (джамперов). Клеммы не связаны ни с одной линией. Чтобы подключить провод к клемме, снимите (открутите) пластиковый колпачок и расположите конец провода в отверстие. Установите колпачок обратно. Обычно используются две клеммы: для питания и для земли.

Теперь дело осталось за малым, подключаем внешний источник питания. Это можно сделать с помощью:

  • джамперов;
  • «крокодилов» или обычных проводов;

  • модулей-стабилизаторов питания, что выпускаются под беспаечные платы.

Спасибо за внимание. Продолжение следует 🙂

Породившая холивар в комментариях. Многие сторонники Ардуины, по их словам, хотят просто чего-то собрать типа мигающих светодиодов с целью разнообразить свой досуг и поиграться. При этом они не хотят возиться с травлением плат и пайкой. Как одну из альтернатив товарищ упомянул конструктор «Знаток», но его возможности ограничены набором деталей, входящих в комплект, да и конструктор все же детский. Я же хочу предложить другую альтернативу - так называемый Breadboard, макетная плата для монтажа без использования пайки.
Осторожно, много фоток.

Что это такое и с чем его едят

Основное назначение такой платы - конструирование и отладка прототипов различных устройств. Состоит данное устройство из отверстий-гнезд с шагом 2,54мм (0,1 дюйма), именно с таким (либо кратным ему) шагом располагаются выводы на большинстве современных радиодеталей (SMD-не в счет). Макетные платы бывают различных размеров, но в большинстве случаев они состоят из вот таких одинаковых блоков:

Схема электрических соединений гнезд изображена на правом рисунке: пять отверстий с каждой стороны, в каждом из рядов(в данном случае 30) электрически соединены между собой. Слева и справа находится по две линии питания: здесь все отверстия в столбце соединены между собой. Прорезь по средине предназначена для установки и удобного извлечения микросхем в DIP-корпусах. Для сборки схемы в отверстия вставляются радиодетали и перемычки, так как мне плата досталась без заводских перемычек - я их делал из металлических канцелярских скрепок, а маленькие(для соединения соседних гнезд) из скоб для степлера.
Может показаться, что чем больше плата - тем больше её функциональность, это не совсем так. Весьма малый шанс что кто-то (особенно из начинающих) будет собирать устройство, которое займет все сегменты платы, вот несколько устройств одновременно - это да. Например здесь я собрал электронное зажигание на микроконтроллере, мультивибратор на транзисторах и генератор частоты для LC-метра:

Ну и что можно с этим сделать?

Чтобы оправдать название статьи, я приведу несколько устройств. Описание того, что и куда нужно вставлять будет на изображениях.
Неободимые детали


Для того, чтобы собрать одну из описанных ниже схем понадобится сама макетная плата типа Breadboard и набор перемычек. Кроме того желательно иметь подходящий источник питания, в простейшем случае - батарейка(-ки), для удобства её(их) подключения рекомендуется использовать специальный контейнер. Можно использовать и блок питания, но в этом случае нужно быть осторожным и постараться ничего не сжечь, так как БП стоит гораздо дороже батареек. Остальные детали будут приведены в описании самой схемы.
Подключение светодиода
Одна из простейших конструкций. На принципиальных схемах изображается так:

Из деталей понадобятся: маломощный светодиод, любой резистор на 300Ом-1кОм и источник питания на 4,5-5В. В моем случае резистор мощный советский(первый попавшийся под руку) на 430Ом (о чем свидетельствует надпись К43 на самом резисторе), а в качестве источника питания - 3 пальчиковых (типа АА) батарейки в контейнере: итого 1,5В*3 = 4,5В.
На плате это выглядит вот так:


Батарейки подключены к красной(+) и черной(-) клеммам от которых тянутся перемычки к линиям питания. Затем от минусовой линии к гнездам №18 подключен резистор, с другой стороны к этим же гнездам катодом(короткой ножкой) подключен светодиод. Анод светодиода подключен к плюсовой линии. Вдаваться в принцип действия схемы и объяснять закон Ома я не буду - если хочется просто поиграться, то это и не нужно, а если все же интересно, то можно и у .
Линейный стабилизатор напряжения
Может это и достаточно резкий переход - от светодиода к микросхемам, но в плане реализации я не вижу никаких сложностей.
Итак, существует такая микросхемка LM7805 (или просто 7805), ей на вход подается любое напряжение от 7,5В до 25В, а на выходе получаем 5В. Есть и другие, например, микросхема 7812 - 12В. Вот такая у неё схема включения:


Конденсаторы используются для стабилизации напряжения и при желании их можно не ставить. Вот так это выглядит в жизни:


И крупным планом:


Нумерация выводов микросхемы идет слева направо, если смотреть на нее со стороны маркировки. На фото нумерация выводов микросхемы совпадает с нумерацией разъемов брэдборда. Красная клемма(+) подключена к 1-й ноге микросхемы - вход. Черная клемма(-) напрямую подключена к минусовой линии питания. Средняя ножка микросхемы(Общий, GND) также подключается к минусовой линии, а 3-я ножка (Выход) к плюсовой линии. Теперь, если подать на клеммы напряжение 12В, на линиях питания должно быть 5В. Если нету источника питания на 12В, можно взять 9В батарейку типа «Крона» и подключить её через специальный разъем, изображенный на фотографии выше. Я использовал блок питания на 12В:


Вне зависимости от значения входного напряжения, если оно лежит в указанных выше пределах - выходное напряжение будет 5В:


В завершение, добавим конденсаторы, чтобы все было по правилам:

Генератор импульсов на логических элементах
А теперь пример использования уже другой микросхемы, при чем не в самом стандартном её применении. Используется микросхема 74HC00 или 74HCТ00, в зависимости от фирмы-производителя перед названием и после него могут стоять различные буквы. Отечественный аналог - К155ЛА3. Внутри этой микросхемы 4 логических элемента «И-НЕ» (англ. «NAND»), у каждого из элементов по два входа, замкнув их между собой получим элемент «НЕ». Но в данном случае логические элементы будут использоваться в «аналоговом режиме». Схема генератора такая:


Элементы DA1.1 и DA1.2 генерируют сигнал, а DA1.3 и DA1.4 - формируют четкие прямоугольники. Частота генератора определяется номиналами конденсатора и резистора и вычисляется по формуле: f=1/(2RC). К выходу генератора подключаем любой динамик. Если взять резистор на 5,6кОм и конденсатор на 33нФ получим примерно 2,7кГц - эдакий пищащий звук. Вот так это выглядит:


На верхние по фотографии линии питания подключено 5В с собранного ранее стабилизатора напряжения. Для удобства сборки приведу словесное описание соединений. Левая половинка сегмента(нижняя на фото):
Конденсатор установлен в гнезда №1 и №6;
Резистор - №1 и №5;

№1 и №2;
№3 и №4;
№4 и №5;



№2 и №3;
№3 и №7;
№5 и №6;
№1 и «плюс» питания;
№4 и «плюс» динамика;
Кроме того:



микросхема устанавливается так, как на фото - первая ножка в первый разъем левой половинки. Первую ножку микросхемы можно определить по так называемому ключу - кружочку(как на фото) либо полукруглому вырезу в торце. Остальные ноги ИМС в DIP-корпусах нумеруются против часовой стрелки.
Если все собрано правильно - при подаче питания динамик должен запищать. Изменяя номиналы резистора и конденсатора можно проследить за изменениями частоты, но при сильно большом сопротивлении и/или слишком малой емкости схема работать не будет.
Теперь изменим номинал резистора на 180кОм, а конденсатор на 1мкФ - получим клацающе-тикающий звук. Заменим динамик на светодиод подключив анод (длинная ножка) к 4 разъему правой половики, а катод через резистор 300Ом-1кОм к минусу питания, получим мигающий светодиод, который выглядит вот так:


А теперь добавим еще один такой же генератор так, чтобы получилась такая схема:


Генератор на DA1 генерит низкочастотный сигнал ~3Гц, DA2.1 - DA2.3 - высокочастотный ~2,7кГц, DA2.4 - модулятор , который их смешивает. Вот такая должна получится конструкция:


Описание подключений:
Левая половинка сегмента(нижняя на фото):
Конденсатор С1 установлен в гнезда №1 и №6;
Конденсатор С2 - №11 и №16;
Резистор R1 - №1 и №5;
Резистор R2 - №11 и №15;
Перемычки установлены между следующими гнездами:
№1 и №2;
№3 и №4;
№4 и №5;
№11 и №12;
№13 и №14;
№14 и №15;
№7 и минусовой линией питания.
№17 и минусовой линией питания.
Правая половинка сегмента(верхняя на фото):
перемычки установлены между следующими гнездами:
№2 и №3;
№3 и №7;
№5 и №6;
№4 и №15;
№12 и №13;
№12(13) и №17;
№1 и «плюс» питания;
№11 и «плюс» питания;
№14 и «плюс» динамика;
Кроме того:
перемычки между разъемами №6 левой и правой половинок;
перемычки между разъемами №16 левой и правой половинок;
- между левой и правой «минусовыми» линиями;
- между минусом питания и "-" динамика;
микросхема DA1 устанавливается так же, как и в предыдущем случае - первая ножка в первый разъем левой половинки. Вторая микросхема - первой ножкой в разъем №11.
Если все сделать правильно, то при подаче питания динамик начнет издавать по три пика каждую секунду. Если в те же разъемы(параллельно) подключить светодиод, соблюдая полярность, получится такой девайс, напоминающий по звукам крутые электронные штуковины из не менее крутых боевиков:
Мультивибратор на транзисторах
Данная схемка - скорее дань традициям так как в былые времена почти каждый начинающий радиолюбитель собирал подобную.


Для того, чтобы собрать подобную понадобятся 2 транзистора BC547, 2 резистора на 1,2кОм, 2 резистора на 310Ом, 2 электролитических конденсатора на 22мкФ и два светодиода. Емкости и сопротивления необязательно соблюдать точно, но желательно чтобы в схеме было по два одинаковых номинала.
На плате устройство выглядит следующим образом:


Цоколевка транзистора следующая:

B(Б)-база, C(К)-коллектор, E(Э)-эмиттер.
У конденсаторов минусовый выход подписан на корпусе (в советских конденсаторах подписывался "+").
Описание подключений
Вся схема собрана на одной (левой) половинке сегмента.
Резистор R1 - №11 и "+";
резистор R2 - №19 и "+";
резистор R3 - №9 и №3;
резистор R4 - №21 и №25;
транзистор Т2 - эмиттер -№7, база - №8, коллектор - №9;
транзистор Т1 - эмиттер -№23, база - №22, коллектор - №21;
конденсатор С1 - минус - №11, плюс - №9;
конденсатор С2 - минус - №19, плюс - №21;
светодиод LED1 - катод-№3, анод-"+";
светодиод LED1 - катод-№25, анод-"+";
перемычки:
№8 - №19;
№11 - №22;
№7 - "-";
№23 - "-";
При подаче напряжения 4,5-12В на линии питания должно получится примерно такое:

В заключение

В первую очередь статья ориентирована на тех, кто хочет «поиграться», поэтому я не приводил описаний принципов работы схем, физических законов и пр. Если кто задастся вопросом «а почему же оно мигает?» - в интернете можно найти кучи объяснений с анимациями и прочими красивостями. Кто-то может сказать что брэдборд не подходит для составления сложных схем, но а как насчет этого:

а бывают и еще более страшные конструкции. По поводу возможного плохого контакта - при использовании деталей с нормальными ножками вероятность плохого контакта очень мала, у меня такое случалось всего пару раз. Вообще подобные платы уже всплывали здесь несколько раз, но как часть устройства построенного на Ардуино. Честно говоря, я не понимаю конструкции типа этой:


Зачем вообще нужно Ардуино, если можно взять программатор, прошить им контроллер в DIP-корпусе и установить его в плату, получив более дешевое, компактное и портативное устройство.
Да, на breadboard нельзя собрать некоторые аналоговые схемы чувствительные к сопротивлению и топологии проводников, но они попадаются не так уж часто, тем более среди новичков. А вот для цифровых схем здесь почти нет никаких ограничений.

Статьи по теме: