Схема электрическая стабилизатора. Виды и схемы стабилизаторов напряжения

Рассмотрим работу стабилизатора на 24 вольта на примере источника питания увлажнителя воздуха для инкубатора. Его питание как раз и составляет эту величину. изображена на рисунке. Главным ее элементом является микроконтроллер UС 3843. Эта схема была дана в документах на эту модель микросхемы.

Схема стабилизатора.

Особенности работы схемы

Интервал напряжений на входе находится в пределах . Мы заказали увлажнитель на расходуемый ток 0,5 А, поэтому номинальный ток потребления преобразователя выбирался в два раза выше, то есть, на 1 А.

Напряжение на выходе равняется 24 В. Вид снаружи этого устройства в сборе, изображен на фотографии, а на рисунке показана печатная плата.

Вместо мощного диода Шоттки использован диод сборки S 10С 40С. Можно использовать другие диоды серии Шоттки с током в прямом направлении не меньше 5 А, и напряжением в обратном направлении около 40 В. Вместо транзистора для переключений подходит любой с видом канала «n», который рассчитан на 50 В напряжения сток – исток.

Оптимальным выбором будут транзисторы с минимальным сопротивлением канала в открытом виде. Подбирать необходимый можно в любом интернет-магазине. В рассматриваемой схеме применен транзистор NDP 603 AL. Дроссель оснащен сердечником Ч22 с наружным диаметром чашек 22 мм. Сборка сердечника осуществляется с зазором 0,22 мм. Катушка дросселя имеет 18 витков обмоточного эмалированного провода с размером диаметра 1 мм.

Дроссель фиксируется к плате с помощью изоляционной шайбы. Вместо такого сердечника с чашками из феррита можно использовать желто-белое кольцо. Эти кольца используются в блоках питания компьютеров. При этом наружный диаметр кольца равняется 20,2 мм, а внутренний диаметр равен 12,6 мм. Его высота равна 6,35 мм. Число витков катушки – 33 штуки из этого же провода.

Допускается использовать кольцо с большим размером диаметра, снизив количество витков до 25. Диоды и транзисторы фиксируются сразу к корпусу прибора, в обязательном порядке через диэлектрические проставки. При такой мощности выхода преобразователя диод и транзистор с помощью импульсного режима могут функционировать и без радиатора охлаждения.

Но в аварийных случаях оптимальным решением будет в качестве отвода тепла использовать маленькие металлические пластины. Если правильно выполнить установку, и все детали будут исправными, то такой стабилизатор на 24 вольта начнет сразу работать.

Стабилизатор постоянного напряжения на 24 В

В широкой сфере радиоэлектронных приборов микросхема 9Б в качестве стабилизатора с тремя выводами с постоянным напряжением 24 В может использоваться для подключения логических схем, а также измерительных приборов, аудиоустройств с качественным воспроизведением.

Наружные элементы могут применяться для ускорения процессов перехода. Конденсатор на входе нужен только в тех случаях, когда регулятор расположен на удалении не больше пяти сантиметров от конденсатора, выполняющего роль фильтра источника питания.

Основные технические параметры:

  1. Вход.
  2. Заземление.
  3. Выход.

Стабилизатор автомобильный на 24 В

Рассмотрим, одну простую электронную самоделку. Это будет стабилизатор 24 вольта. Но это не обычный стабилизатор, а надежный и мощный линейный прибор. Мы давно им пользуемся. Через эту схему в автомобиле подключен к питанию радар-детектор. Он оснащен внутренней стабилизацией. Однако иногда она подводит, и однажды детектор вышел из строя.

Мы не стали отдавать его в ремонт, а просто вытащили из него сгоревший стабилизатор и подключили от отдельного стабилизатора, сделанного своими руками. Уже около двух лет он работает исправно. Но сейчас снова понадобилась подобная схема. Только не для автомобиля, а для бытовых целей.

Необходимо подключить к питанию усилитель низкой частоты. Его питание напряжением составляет 24 вольта. Стабилизатор выполнен на базе микросхемы L 7824. Эта микросхема может обеспечить пропускание тока величиной 1,5 А. Однако при значительном токе она сильно нагревается, и снижает свою стабильность. Чтобы решить эту проблему и увеличить ток, с помощью которого будет стабилизация, разработана простейшая схема.


В этой схеме усиление будет происходить с помощью работы транзистора, подключенного по параллельной схеме. Схема простая и не нуждается в дорогостоящих дефицитных деталях. Она может быть выполнена навесным способом монтажа для проверки работы.

Радиатор охлаждения для такой схемы обязателен, так как вид схемы линейный, и на полупроводнике рассеивается значительная мощность. Линейность схемы является положительным моментом для усилителя, так как нет посторонних помех от шим-модулятора. Монтажная плата была вытравлена в растворе лимонной кислоты и перекиси водорода.

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования , в отличие от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.


В основе работы лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.


Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.


При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.


Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.


В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.


Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. имеют самую низкую цену среди этих приборов.



Пример схемы релейного стабилизатора


Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.


Принцип работы не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же , по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.


Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.


Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора - использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 - 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже:

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом



Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из - за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки (в пределах 250 ... 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно - трансформаторные стабилизаторы

Релейно - трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 ... 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле - схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно - трансформаторного стабилизатора:

Схема цифрового релейно - трансформаторного стабилизатора на электромагнитных реле



Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников - так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.



Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется, a VT2 - откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Смотрите также схемы.



Статьи по теме: