Научные эксперименты, которые изменили мир.

Более 160 экспериментов, которые наглядно демонстрируют законы физики и химии, сняты, смонтированы и выложены в сеть на научно-познавательном видео-канале «Простая наука». Многие из опытов настолько просты, что их легко повторить и дома – они не требуют специальных реактивов и приспособлений. О том, как сделать простые химические и физические опыты в домашних условиях не только интересными, но и безопасными, какие эксперименты увлекут малышей, а какие будут любопытны школьникам, «Летидору» рассказал Денис Мохов, автор и главный редактор научно-познавательного видео-канала «Простая наука» .

– С чего начался ваш проект?

Я с детства люблю различные опыты. Сколько себя помню, собирал различные идеи для экспериментов, в книгах, телепередачах, чтобы потом самостоятельно их повторить. Когда я сам стал отцом (моему сыну Марку сейчас 10 лет), для меня всегда было важно сохранить любознательность в сыне и, конечно, суметь ответить на его вопросы. Ведь, как и любой ребёнок, он смотрит на мир совершенно иначе, чем взрослые. И и в определенный момент его самым любимым словом стало слово «почему?». Именно из этих «почему?» начались домашние опыты. Ведь рассказать – это одно, а показать – совсем другое. Можно сказать, что любопытство моего ребёнка послужило импульсом для создания проекта «Простая наука».

– Сколько лет было вашему сыну, когда вы начали практиковать домашние опыты?

Опытами дома мы занимаемся c того момента, как сын пошел в детский сад, где-то после двух лет. Сначала это были совершенно простые эксперименты с водой и равновесием. Например, реактивный пакет , бумажные цветы на воде , две вилки на спичечной головке . Сыну сразу понравились эти забавные «фокусы». Причем ему, как и мне, всегда интересно не столько наблюдать, сколько повторить их самостоятельно.

С маленькими детьми можно провести интересные эксперименты в ванной: с лодочкой и жидким мылом , бумажным корабликом и воздушным шаром,
теннисным шариком и струей воды . Ребенок с самого рождения стремится познавать все новое, эти зрелищные и красочные опыты ему обязательно понравятся.

Когда же мы имеем дело со школьниками, пусть даже и первоклассниками, тут уже можно развернуться вовсю. В этом возрасте детям интересны взаимосвязи, они будут внимательнее наблюдать эксперимент, а потом искать объяснение, почему происходит так, а не иначе. Здесь как раз можно разъяснить суть явления, причины взаимодействий, пусть даже и не совсем научными терминами. И, когда на школьных уроках ребенок столкнется с подобными явлениями (в том числе в старших классах), объяснения учителя ему будут понятны, ведь он это уже знает с детства, у него есть личный опыт в этой области.

Интересные эксперименты для младших школьников

**Пакет, проткнутый карандашами**

**Яйцо в бутылке**

Резиновое яйцо

**– Денис, что посоветуете родителям в плане безопасности домашних экспериментов?** – Опыты я бы условно разделил на три группы: безобидные, опыты, требующие аккуратности и опыты, и последнее **–** опыты, требующие соблюдения техники безопасности. Если вы демонстрируете, как две вилки стоят на кончике зубочистки, то это первый случай. Если вы делаете опыт с атмосферным давлением, когда стакан с водой накрывают бумажным листом и затем переворачивают, то тут нужно быть аккуратным и не пролить воду на электроприборы **–** делайте опыт над раковиной. Когда в опытах участвует огонь, припасите сосуд с водой на всякий случай. А если используете какие-либо реактивы или химикаты (пусть даже обыкновенный уксус), тут лучше выйти на свежий воздух или в хорошо проветриваемое помещение (например, балкон) и еще обязательно надеть на ребенка защитные очки (можно использовать лыжные, строительные или солнцезащитные).

**– Где взять реактивы и приспособления?** **– ** Дома для проведения опытов с детьми до 10 лет лучше всего использовать общедоступные реактивы и приспособлениями. Это то, что есть у каждого из нас на кухне: сода, соль, куриное яйцо, вилки, стаканы, жидкое мыло. Безопасность в нашем деле превыше всего. Особенно, если ваш «юный химик» после успешных экспериментов вместе с вами, попытается повторить опыты самостоятельно. Только не нужно ничего запрещать, все дети любознательны, а запрет подействует как дополнительный стимул! Лучше объяснить ребенку, почему некоторые эксперименты нельзя делать без взрослых, что есть определенные правила, где-то нужна открытая площадка для проведения опыта, где-то необходимы резиновые перчатки или очки. **– Была ли в вашей практике такие случаи, когда эксперимент оборачивался экстренной ситуацией?** **– ** Ну, дома ничего такого не было. Зато в редакции «Простой науки» частенько случаются казусы. Однажды, снимая опыт с ацетоном и оксидом хрома, мы немного не рассчитали пропорции, и опыт чуть было не вышел из-под контроля.

А недавно, при съемках для канала Наука 2.0, мы должны были сделать зрелищный эксперимент, когда 2000 шариков для настольного тенниса вылетают из бочки и красиво падают на пол. Так вот, бочка оказалась довольно хрупкой и вместо красивого полета шариков получился взрыв с оглушающим грохотом. **– Откуда берете идеи для опытов?** **–** Идеи находим в интернете, в научно-популярных книгах, в новостях о каких-то интересных открытиях или необычных явлениях. Основные критерии **–** зрелищность и простота. Стараемся выбирать те эксперименты, которые легко повторить дома. Правда, иногда мы выпускаем «деликатесы» **–** опыты, для которых нужны необычные приспособления, специальные ингредиенты, но это бывает не слишком часто. Иногда советуемся с профессионалами из тех или иных областей, например, когда делаем опыты по сверхпроводимости при низких температурах или в химических опытах, когда требуются редкие реактивы. В поиске идей нам также помогают наши зрители (число которых в этом месяце перевалило за 3 миллиона), за что мы их, конечно, благодарим.

Химик - профессия очень интересная и многогранная, объединяющая под своим крылом множество разных специалистов: ученых-химиков, химиков-технологов, химиков-аналитиков, нефтехимиков, преподавателей химии, фармацевтов и многих других. Мы решили вместе с ними отметить приближающийся День химика 2017, поэтому выбрали несколько интересных и впечатляющих экспериментов в рассматриваемой области, которые сможет повторить даже тот, кто от профессии химика максимально далек. Лучшие химические опыты в домашних условиях - читайте, смотрите и запоминайте!

Когда отмечают День химика

Прежде чем мы начнем рассматривать наши химические опыты, уточним, что традиционно День химика отмечают на территории государств постсоветского пространства в самом конце весны, а именно - в последнее воскресенье мая. Это значит, что дата не фиксирована: например, в 2017 году День химика отмечается 28 мая. И если вы работаете в сфере химической промышленности, либо изучаете специальность из этой области, или как-то иначе непосредственно связаны с химией по долгу службы, значит, имеете полное право в этот день присоединиться к торжеству.

Химические опыты в домашних условиях

А теперь приступаем к главному, и начинаем выполнять интересные химические опыты: лучше всего делать это вместе с маленькими детьми, которые точно воспримут происходящее как магический фокус. Причем мы постарались подобрать такие химические эксперименты, реактивы к которым можно легко достать в аптеке или магазине.

Опыт №1 - Химический светофор

Начнем с очень простого и красивого опыта, который получил такое название отнюдь не зря, ведь участвующая в эксперименте жидкость будет менять свой цвет как раз на цвета светофора - красный, желтый и зеленый.

Вам понадобится:

  • индигокармин;
  • глюкоза;
  • каустическая сода;
  • вода;
  • 2 прозрачные стеклянные емкости.

Пусть названия некоторых ингредиентов вас не пугают - глюкозу в таблетках можно запросто купить в аптеке, индигокармин продается в магазинах как пищевой краситель, а каустическую соду найдете в хозяйственном магазине. Емкости лучше взять высокие, с широким основанием и более узким горлом, например, колбы, чтобы их было удобнее взбалтывать.

Но чем интересны химические опыты - здесь всему есть объяснение:

  • Смешав глюкозу с каустической содой, т. е. гидроксидом натрия, мы получили щелочной раствор глюкозы. Затем, смешав его с раствором индигокармина, мы окисляем жидкость кислородом, которым она насытилась во время переливания из колбы - это и есть причина появления зеленого цвета. Далее в качестве восстановителя начинает работать глюкоза, постепенно меняя цвет на желтый. Но встряхнув колбу, мы снова насыщаем жидкость кислородом, позволяя химической реакции пройти этот круг заново.

О том, как интересно это выглядит вживую, вы получите представление из данного короткого ролика:

Опыт №2 - Универсальный индикатор кислотности из капусты

Дети обожают интересные химические опыты с разноцветными жидкостями, это не секрет. Но и мы, как взрослые, ответственно заявляем, что выглядят такие химические эксперименты очень зрелищно и любопытно. Поэтому мы советуем вам провести в домашних условиях еще один «цветовой» опыт - демонстрацию удивительных свойств краснокочанной капусты. В ней, как и во многих других овощах и фруктах, содержатся антоцианы - природные красители-индикаторы, меняющие свой цвет в зависимости от уровня pH - т.е. степени кислотности среды. Это свойство капусты нам и пригодится, чтобы получить далее разноцветные растворы.

Что нам понадобится:

  • 1/4 краснокочанной капусты;
  • сок лимона;
  • раствор пищевой соды;
  • уксус;
  • сахарный раствор;
  • напиток типа «Спрайт»;
  • дезинфицирующее средство;
  • отбеливатель;
  • вода;
  • 8 колб или бокалов.

Многие вещества из этого списка довольно опасны, поэтому соблюдайте осторожность, выполняя простые химические опыты в домашних условиях, наденьте перчатки, по возможности защитные очки. И не подпускайте детей слишком близко - они могут опрокинуть реагенты или итоговое содержимое цветных колбочек, даже захотеть их попробовать, чего никак нельзя допустить.

Приступаем к выполнению:

А как эти химические опыты объясняют изменения цвета?

  • Дело в том, что на все объекты, которые мы видим, падает свет - а он содержит в себе все цвета радуги. При этом каждый цвет в луче спектра имеет свою длину волны, а молекулы разной формы, в свою очередь, отражают и поглощают эти волны. Та волна, которая отражается от молекулы, и является той, которую мы видим, и это определяет, какой цвет мы воспринимаем - ведь другие волны просто поглощаются. И в зависимости от того, какое вещество мы добавляем к индикатору, он и начинает отражать только лучи определенного цвета. Ничего сложного!

Немного другой вариант этого химического опыта, с меньшим количеством реагентов, смотрите в видео:

Опыт №3 - Танцующие желейные червячки

Продолжаем делать химические опыты в домашних условиях - и третий эксперимент мы проведем над всеми любимыми желейными конфетками в виде червячков. Даже взрослым он покажется забавным, а детей и вовсе в восторг приведет.

Возьмите следующие ингредиенты:

  • горсть желейных червячков;
  • уксусную эссенцию;
  • обыкновенную воду;
  • пищевую соду;
  • стаканы - 2 шт.

Выбирая подходящие конфеты, остановитесь на гладких тягучих червячках, без сахарной обсыпки. Чтобы они не были тяжелыми и легче шевелились, разрежьте каждую конфетку вдоль на две половинки. Итак, начинаем интересные химические опыты:

  1. Сделайте в одном стакане раствор теплой воды и 3 столовых ложек соды.
  2. Поместите туда червячков и подержите их там около пятнадцати минут.
  3. Другой глубокий стакан заполните эссенцией. Теперь можно потихоньку бросать желешки в уксус, наблюдая, как они начинают двигаться вверх-вниз, что в некотором роде похоже на танец:

Почему так происходит?

  • Все просто: пищевая сода, в которой четверть часа пропитываются червячки - это гидрокарбонат натрия, а эссенция - 80% раствор уксусной кислоты. Когда они вступают в реакцию, образуется вода, углекислый газ в виде мелких пузырьков и натриевая соль уксусной кислоты. Именно углекислым газом в виде пузырей обрастает червячок, поднимается вверх, а затем опускается, когда они лопаются. Но процесс все еще продолжается, заставляя конфетку подниматься на образующихся пузырьках и опускаться вплоть до полного своего завершения.

А если вы всерьез интересуетесь химией, и хотите, чтобы в будущем День химика стал и вашим профессиональным праздником, то вам наверняка будет любопытно посмотреть следующее видео, где подробно рассказывается о типичных буднях студентов-химиков и их увлекательной учебно-научной деятельности:


Забирай себе, расскажи друзьям!

Читайте также на нашем сайте:

Показать еще

Занимательная физика в нашем изложении расскажет, почему в природе не может быть двух одинаковых снежинок и зачем машинист электровоза сдает назад перед тем, как тронуться, где находятся самые большие запасы воды и какое изобретение Пифагора помогает бороться с алкоголизмом.

Эксперимент – это один из доступных научному мировоззрению методов познания окружающей реальности, обоснованный принципами повторимости и доказательности. Этот метод строится индивидуально в зависимости от выбранной области, на основании теорий или выдвинутых гипотез и происходит в специально контролируемых или управляемых условиях, удовлетворяющих запросу исследования. Стратегия эксперимента предполагает целенаправленно выстроенное наблюдение за выбранным явлением или объектом в заранее определенных гипотезой условиях. В психологической отрасли эксперимент предусматривает совместное взаимодействие экспериментатора и обследуемого, направленное на выполнение разработанных предварительно экспериментальных заданий и изучение возможных изменений и взаимосвязей.

Эксперимент относится к разделу эмпирических методов и выступает критерием истинности установленного явления, поскольку безоговорочным условием построения экспериментальных процессов является их повторная воспроизводимость.

Эксперимент в психологии используется как основной способ изменения (в терапевтической практике) и исследования (в науке) реальности, и имеет традиционное планирование (при одной неизвестной переменной) и факторное (когда неизвестных переменных несколько). В случае, когда исследуемое явление или его область представляются недостаточно исследованными, применяется пилотажный эксперимент, помогающий уточнить дальнейшее направление построения .

Отличается от исследовательского метода наблюдения и невмешательства активным взаимодействием с объектом изучения, намеренным вызыванием изучаемого явления, возможностью изменения условий процесса, количественного соотношения параметров и включает в себя статистическую обработку данных. Возможность контролированного изменения условий или составляющих эксперимента позволяет исследователю более глубоко изучить явление или заметить ранее не выявленные закономерности. Основная трудность применения и оценки достоверности экспериментального метода в психологии заключается в частой включенности экспериментатора во взаимодействие или общение с испытуемыми и косвенным образом, под воздействием подсознательных , может оказать влияние на результаты и поведение обследуемого.

Эксперимент, как метод исследования

При изучении явлений возможно использование нескольких видов методов: активные (эксперименты) и пассивные (наблюдение, архивное и биографическое исследование).

Метод эксперимента подразумевает под собой активное влияние или вызывание исследуемого процесса, присутствие основной и контрольной (максимально схожая с основной, но не подвергающаяся влиянию) экспериментальных групп. По своему смысловому назначению выделяют исследовательский эксперимент (при неизвестности наличия взаимосвязи между выбранными параметрами) и подтверждающий (когда взаимосвязь переменных установлена, но необходимо выявить характер этой связи). Для построения практического исследования необходимо изначальное формулирование определений и изучаемой проблемы, постановка гипотез, последующая их проверка. Полученные результативные данные обрабатывают и интерпретируют, используя методы матстатистики, учитывающей особенности переменных и выборок испытуемых.

Отличительными чертами экспериментального изучения являются: искусственная самостоятельная организация условий для активизации или появления определенного изучаемого психологического факта, возможность изменять условия и устранять некоторые из влияющих факторов.

Все построение экспериментальных условий сводится к определению взаимодействия переменных: зависимой, независимой и побочных. Под независимой переменной понимается то условие или явление, которое может варьировать или изменять экспериментатор (выбранное время суток, предлагаемая задача), чтобы проследить его дальнейшее влияние на зависимую переменную (слова или ответные на стимул действия испытуемого), т.е. параметров другого явления. В ходе определения переменных важно обозначить и конкретизировать их так, чтобы они поддавались регистрации и анализу.

Помимо качеств конкретности и регистрируемости, должно быть соответствие и надежности, т.е. тенденция сохранять устойчивость показателей ее регистрируемости и сохранении полученных показателей только при условиях, повторяющих экспериментальные, касательно выбранной гипотезы. Побочными переменными являются все факторы, которые косвенным образом влияют на результаты или течение эксперимента, будь то освещение или уровень бодрости испытуемого.

Метод эксперимента обладает рядом преимуществ, среди которых повторяемость изучаемого явления, имеющаяся возможность влиять на результаты путем изменения переменных, возможность выбора начала осуществления эксперимента. Это единственный метод, дающий наиболее достоверные результаты. Среди причин критики данного метода находится непостоянность, спонтанность и уникальность психики, а также субъект-субъектные отношения, которые своим наличием не совпадают с научными правилами. Еще одной негативной характеристикой метода является то, что условия лишь частично воспроизводят реальность, и соответственно подтверждение и стопроцентное воспроизведение полученных в лабораторных условиях результатов в условиях реальности не возможно.

Виды экспериментов

Однозначной классификации экспериментов нет, так как понятие состоит из множества характеристик, на основании выбора которых и строится дальнейшее разграничение.

На этапах постановки гипотезы, когда еще не определены методы и выборки, стоит проводить мысленный эксперимент, где учитывая теоретические предпосылки, ученые проводят воображаемое исследование, стремящееся к обнаружению противоречий внутри используемой теории, несопоставимость концепций и постулатов. В мысленном эксперименте исследуются не сами явления с практической стороны, а имеющаяся теоретическая информация о них. Построение реального эксперимента включает в себя планомерное манипулирование переменными, их коррекция и выбор в реальности.

Лабораторный эксперимент присутствует при искусственном воссоздании специальных, организующих необходимую обстановку условий, при наличии аппаратуры и инструкции, определяющей действия испытуемого, сами испытуемые осознают свое участие в методе, но от них могут утаивать гипотезу, для получения независимых результатов. При такой постановке возможен максимальный контроль переменных, но полученные данные тяжело сопоставимы с реальной жизнью.

Естественный (полевой) или квазиэксперимент происходит, когда исследование проводится непосредственно в группе, где не возможна полная корректировка необходимых показателей, в естественных для выбранной социальной общности условиях. Используется для изучения взаимовлияния переменных в реальных жизненных условиях, происходит в несколько этапов: анализ поведения или отзывов исследуемого, фиксация полученных наблюдений, анализ результатов, составление полученной характеристики исследуемого.

В психологической исследовательской деятельности наблюдается применение в одном исследовании констатирующего и формирующего эксперимента. Констатирующий определяет наличие явления или функции, тогда как формирующий проводит анализ изменения данных показателей после этапа обучения или иного влияния на выбранные гипотезой факторы.

При постановке нескольких гипотез применяется критический эксперимент, для подтверждения истинности одной из выдвинутых версий, при этом остальные признаются опровергнутыми (для реализации нужна высокая степень разработки теоретической базы, а также довольно сложное планирование самой постановки).

Проведение эксперимента актуально при проверке пробных гипотез, выбора дальнейшего хода исследования. Такой проверочный метод называется пилотажным, проводится при подключении меньшей выборки, чем при полном эксперименте, с меньшим внимаем к анализу деталей результатов, и стремится выявить лишь общие тенденции и закономерности.

Так же эксперименты различают по количеству информации, доступной испытуемому о самих условиях исследования. Выделяют эксперименты, где испытуемый владеет полной информацией о ходе исследования, те, где некоторая информация утаивается, те, где испытуемый не знает о проводимом эксперименте.

По полученным результатам различают групповые (полученные данные характерны и актуальны для описания явлений, присущих определенной группе) и индивидуальные (данные, описывающие конкретную личность) эксперименты.

Психологические эксперименты

Эксперимент в психологии имеет отличительную особенность от особенностей его проведения в других науках, поскольку объект исследования имеет собственную субъектность, что может вносить определенный процент влияния, как на ход изучения, так и на результаты исследования. Основная задача, которая ставится перед психологическим экспериментом – вывести на обозримую поверхность сокрытые внутри психики процессы. Для достоверности передачи такой информации требуется полный контроль максимального количества переменных.

Понятие эксперимента в психологии, помимо исследовательской сферы, используется в психотерапевтической практике, когда происходит искусственная постановка актуальных для личности проблем, для углубления переживаний или проработки внутреннего состояния.

Первые шаги на пути экспериментальной деятельности заключаются в установлении определенных взаимоотношений с испытуемыми, определение особенностей выборки. Далее испытуемые получают инструкцию для выполнения, содержащую описание хронологичности порядка выполняемых действий, изложенную максимально подробно и в лаконичной форме.

Этапы осуществления психологического эксперимента:

— постановка проблемы и выведение гипотезы;

— анализ литературных и теоретических данных по выбранной проблематике;

— выбор экспериментального инструмента, позволяющего как управлять зависимой переменной, так и регистрировать изменения независимой;

— формирование релевантной выборки и групп испытуемых;

— проведение экспериментальных опытов или диагностики;

— сбор и статистическая обработка данных;

— результатов исследования, составление выводов.

Проведение психологического опыта привлекает к себе внимание социума значительно чаще, чем экспериментирование в других областях, так как затрагивает не только научные понятия, но также этическую сторону вопроса, ведь при постановке условий и наблюдений экспериментатор непосредственно вмешивается и влияет на жизнь испытуемого. Существует несколько всемирно известных экспериментов, касающихся особенностей поведенческих детерминант человека, часть из которых признаны антигуманными.

Хоторнский эксперимент возник вследствие снижения производительности работников одного предприятия, после чего были предприняты диагностические методы по выявлению причин. Результаты исследования показали, что производительность зависит от занимаемого социального положения и роли человека, а те работники, которые попали в группу испытуемых, начали работать лучше лишь от осознания факта участия в эксперименте и того, что на них направленно внимание работодателя и исследователей.

Эксперимент Милгрэма был направлен на установление количества боли, которое может нанести человек другим, абсолютно невинным, если это входит в их обязанности. Участвовало несколько людей – сам испытуемый, начальник, который отдавал ему приказ в случае ошибки направлять на провинившегося разряд электрического тока и непосредственно тот, кому предназначалось наказание (эту роль выполнял актер). В ходе данного эксперимента было выявлено, что люди способны нанести значительные физические страдания другим невиновным, из чувства необходимости подчинения или ослушаться авторитетных лиц, даже при условии возникновения с их внутренними убеждениями.

Эксперимент Рингельмана устанавливал изменение уровня производительности в зависимости от количества человек, привлеченных к выполнению задачи. Оказалось, что чем больше человек участвует в выполнении работы, тем ниже производительность каждого и группы в целом. Это дает основания утверждать, что при осознаваемой индивидуальной ответственности есть стремление максимально выложиться в стараниях, тогда как при групповой работе можно переложить на другого.

«Чудовищный» эксперимент, который некоторое время успешно скрывали его авторы, опасаясь наказания, был направлен на изучение силы внушения. В его ходе двум группам детей из интерната говорили об их навыках: первую группу хвалили, а вторую постоянно критиковали, указывая на недостатки в речи. В дальнейшем у детей из второй группы, ранее не сталкивавшихся с речевыми затруднениями, начали развиваться дефекты речи, некоторые из которых сохранились до конца жизни.

Есть еще много других экспериментов, где вопросы морали не были учтены авторами, и, несмотря на предполагаемую научную ценность и открытия, восхищение не вызывают.

Эксперимент в психологии имеет своим назначением изучение психических особенностей для улучшения его жизни, оптимизации работы и борьбы со страхами и поэтому первоочередным требованием к разработке методов исследований является их этичность, ведь результаты экспериментальных опытов могут вызвать необратимые изменения, изменяющие последующую жизнь человека.

Невероятные факты

Цветы Дарвина

Большинство людей знакомы с деятельностью Чарльза Дарвина и с его знаменитым путешествием в Южную Америку. Он сделал свои наиболее важные открытия на Галапагосских островах, где каждый из 20 островов обладал своим уникальным набором видов, идеально адаптированных для проживания в тех условиях. Но мало кто знает об экспериментах Дарвина после того, как он вернулся в Англию. Некоторые из них были сосредоточены на орхидеях.

В процессе выращивания и изучения нескольких видов орхидей, он понял, что сложные цветки орхидей – это адаптация, позволяющая цветам привлекать насекомых, которые затем переносят пыльцу на соседние растения. Каждое насекомое специально предназначено для опыления одного типа орхидеи. Взять, к примеру, орхидею Вифлеемская звезда (Angraecum sesquipedale), нектар в которой хранится на глубине 30 сантиметров. Дарвин предугадал, что обязательно должно быть насекомое, которое опыляет этот вид орхидеи. Конечно, в 1903 году, ученые открыли вид под названием сумеречная бабочка, обладающая длинным хоботком, который может дотянуться до нектара этого вида орхидеи.

Дарвин использовал данные, которые он собрал об орхидеях и их насекомых опылителях для укрепления своей теории естественного отбора. Он утверждал, что перекрестно опыляемые орхидеи более жизнеспособны, чем самоопыляемые, поскольку самоопыление снижает генетическое разнообразие, что, в конечном итоге, оказывает прямое воздействие на выживаемость вида. Так, три года спустя, после того, как он впервые описал естественный отбор в "О происхождении видов", Дарвин провел еще несколько экспериментов на цветах и укрепил свои утверждения о рамках эволюции.

Расшифровка ДНК

Джеймс Уотсон (James Watson) и Фрэнсис Крик (Francis Crick) подошли очень близко к расшифровке ДНК, но их открытия в значительной степени зависят от работ Альфреда Херши (Alfred Hershey) и Марты Чейз (Martha Chase), они в 1952 году провели известный по сей день эксперимент, который помог им определить как молекулы ДНК связаны с наследственностью. Херши и Чейз работали с типом вируса, известного как бактериофаг. Этот вирус, состоящий из белковой оболочки, окружает нить ДНК, заражает бактериальную клетку, что программирует ее на производство новых зараженных клеток. Затем вирус убивает клетку и на свет появляются новые вирусы. Херши и Чейз знали об этом, но, при этом, они не знали, какой компонент – белок или ДНК – был ответственен за происходящее. Они не знали это до проведения своего гениального "блендер" эксперимента, который вывел их на ДНК рибонуклеиновые кислоты.

После эксперимента Херши и Чейз многие ученые, такие как Розалинд Франклин (Rosalind Franklin) сосредоточились на изучении ДНК и его молекулярную структуру. Франклин использовал технику, называемую рентгеновской дифракцией для изучения ДНК. Она подразумевает "вторжение" Х-лучей в волокна очищенной ДНК. При взаимодействии лучей с молекулой, они "сбиваются" с первоначального курса и становятся дифрагированными. Далее дифрагированные лучи образуют картинку уникальной молекулы, готовой для анализа. Знаменитая фотография Франклина показывает Х-образную кривую, которую Уотсон и Крик обозначили как "подпись молекулы ДНК". Они смогли также определить ширину спирали, глядя на изображение Франклина.

Первая вакцинация

До полной глобальной ликвидации оспы в конце 20 века, это заболевание представляло собой серьезную проблему. В 18 веке, заболевание вызванное вирусом оспы, убивало каждого десятого ребенка, родившегося в Швеции и Франции. "Поимка" вируса было единственной возможностью «лечения». Это привело к тому, что люди сами пытались поймать вирус из гнойных язв. К сожалению, многие из них умерли при опасной попытке самостоятельной прививки.

Эдвард Дженнер (Edward Jenner), британский врач, начал изучать вирус и разрабатывать эффективные методы лечения. Генезисом его экспериментов стало наблюдение того, что доярки, проживающие в его родном городе, часто заражались вирусом коровьей оспы, несмертельным заболеванием, похожим на обычную оспу. Доярки, которые заражались коровьей оспой, казалось, были защищены от инфекции оспы, поэтому в 1796 году Дженнер решил проверить, может ли человек развить иммунитет к обычной оспе, если его заразить вирусом коровьей оспы. Мальчика, над которым Дженнер решил провести свой эксперимент, звали Джеймс Фиппс (James Phipps). Дженнер сделал надрез на руке Фиппса и заразил его коровьей оспой. Через некоторое время мальчик выздоровел. 48 дней спустя доктор ввел в его организм вирус обычной оспы и обнаружил у мальчика иммунитет.

Сегодня ученые знают, что вирусы коровьей и обычной оспы настолько похожи, что иммунная система человека не в состоянии их отличить.

Доказательство существования атомного ядра

Физик Эрнест Резерфорд (Ernest Rutherford) уже выиграл Нобелевскую премию в 1908 году за свои радиоактивные работы, при этом в тот период времени он также начал проводить эксперименты по выявлении структуры атома. Эксперименты были основаны на его предыдущих исследованиях, которые показали, что радиоактивность состоит из двух типов лучей – альфа и бета. Резерфорд и Ганс Гейгер (Hans Geiger) установили, что альфа-лучи – это потоки положительно заряженных частиц. Когда он выпускал альфа-частицы на экран, они создавали четкое и резкое изображение. Но если между источником альфа-излучения и экраном располагался тонкий лист из слюды, то полученное изображение было размытым. Было ясно, что слюда рассеивала некоторые альфа-частицы, но как и почему это происходило, на тот момент не было понятно.

В 1911 году, физик расположил тонкий лист золотой фольги между источником альфа-излучения и экраном, толщиной 1-2 атома. Также он разместил еще один экран перед источником альфа-излучения для того, чтобы понять какие из частиц отклоняются назад. На экране позади фольги, Резерфорд наблюдал диффузную картину, аналогичную той, какую он видел при использовании листа из слюды. Увиденное на экране перед фольгой очень удивило Резерфорда, поскольку несколько альфа-частиц отскочили прямо назад. Резерфорд заключил, что сильный положительный заряд, находящийся в сердце атомов золота, отправил альфа-частицы обратно к источнику. Он назвал этот сильный положительный заряд "ядром", и заявил, что по сравнению с общим размером атома, его ядро должно быть очень мало, в противном случае назад бы вернулось гораздо большее количество частиц. Сегодня ученые аналогично Резерфорду визуализируют атомы: маленькие, положительно заряженные ядра в окружении большого, в основном пустого пространства, в котором обитает несколько электронов.

Рентген

Мы уже говорили выше о рентгеновской дифракции исследований Франклина, но проделанной работой он многим обязан Дороти Кроуфут Ходжкин (Dorothy Crowfoot Hodgkin), одной из трех женщин, которым удалось выиграть Нобелевскую премию по химии. В 1945 году Ходжкин считалась одной из ведущих специалистов мира, практикующих методы рентгеновской дифракции, поэтому не удивительно, что именно она, в конце концов, показала структуру одного из важнейших на сегодняшний день химических веществ в медицине – пенициллина. Александр Флеминг обнаружил убивающее бактерии вещество еще в 1928 году, но ученым потребовалось еще некоторый период времени для того, чтобы очистить вещество в целях разработки эффективного лечения. Таким образом, при помощи атомов пенициллина Ходжкин удалось создать полусинтетические производные пенициллина, что оказалось революцией в борьбе с инфекциями.

Исследования Ходжкин стали известными как рентгеновская кристаллография. Химики впервые кристаллизировали соединения, которые они хотели проанализировать. Это был вызов. После того, как испытания кристаллов пенициллина провели две разные компании, Ходжкин пустила рентгеновские волны через кристаллы и позволила радиации «проникнуть в исследуемый объект». При взаимодействии Х-лучей с электронами исследуемого объекта, лучи становились немного дифрагированными. Это привело к появлению четкого рисунка из точек на фотопленке. Проанализировав положение и яркость этих точек и выполнив множество расчетов, Ходжкин точно определила, как располагаются атомы в молекуле пенициллина.

Несколько лет спустя она использовала эту же технологию при выявлении структуры витамина В12. Она получила Нобелевскую премию по химии в 1964 году, честь, которой не удостоилась больше ни одна другая женщина.

Возникновение жизни

В 1929 году биохимики Джон Холдейн (John Haldane) и Александр Опарин независимо друг от друга предположили, что в ранней атмосфере Земли отсутствовал свободный кислород. В тех суровых условиях, они предположили, органические соединения могли формироваться из простых молекул, получая серьезный заряд энергии, будь то ультрафиолетовое излучение или яркий свет. Холдейн также добавил, что океаны, вероятно, были первыми источниками этих органических соединений.

Американские химики Гарольд Юри (Harold Urey) и Стэнли Миллер (Stanley Miller) решили проверить гипотезы Опарина и Холдейна в 1953 году. Им удалось воссоздать раннюю атмосферу Земли путем тщательной работы над контролируемой, закрытой системой. Роль океана играла колба с нагретой водой. После того, как водяной пар поднимался и собирался в другой емкости, Юрии и Миллер добавляли водород, метан и аммиак для того, чтобы сымитировать безкислородную атмосферу. Затем в колбе образовывались искры, представляющие свет в смеси газов. Наконец, конденсатор охлаждал газы в жидкости, которую они затем брали на анализ.

Спустя неделю, Юрии и Миллер получили удивительные результаты: в охлажденной жидкости в изобилии присутствовали органические соединения. В частности, Миллер обнаружил несколько аминокислот, в том числе глицин, аланин и глутаминовую кислоту. Аминокислоты – это строительные элементы белков, которые сами являются ключевыми компонентами и клеточных структур и клеточных ферментов, ответственных за функционирование важных химичексих реакций. Юри и Миллер пришли к выводу, что органические молекулы вполне могли выжить в безкислородной среде, что, в свою очередь, не заставило ждать появление простейших организмов.

Создание света

Когда в 19 веке появился свет, он так и остался загадкой, которая вдохновляла на проведение многих увлекательных экспериментов. К примеру, "двухщелевый эксперимент" Томаса Юнга (Thomas Young), который показал, как ведут себя световые волны, но не частицы. Но тогда еще не знали, как быстро свет путешествует.

В 1878 году физик А.А.Майкельсон (A.A. Michelson) провел эксперимент для того, чтобы рассчитать скорость света и доказать, что это конечная, измеряемая величина. Вот что он сделал:

1. Во-первых, он разместил два зеркала далеко друг от друга на разных сторонах дамбы возле университетского городка, расположив их так, что падающий свет отражался от одного зеркала и возвращался назад. Он измерил расстояние между зеркалами и обнаружил, что оно равнялось 605, 4029 метров.

3. При помощи линз он сфокусировал луч света на неподвижном зеркале. Когда луч света касался неподвижного зеркала, он отскакивал и отражался во вращающемся зеркале, возле которого Майкельсон разместил специальный экран. В связи с тем, что второе зеркало вращалось, траектория возвращения светового пучка незначительно изменилась. Когда Майкельсон измерил эти отклонения, он получил цифру 133 мм.

4. Используя полученные данные, ему удалось измерить скорость света, равную 186380 миль в секунду (299 949 530 километра). Допустимое значение для скорости света на сегодняшний день составляет 299 792 458 км в секунду. Измерения Майкельсона показали на удивление точный результат. Более того, в распоряжении ученых сейчас находятся более точные представления о свете и основ, на которых строятся теория квантовой механики и теория относительности.

Открытие радиации

1897 год был очень важным для Марии Кюри. Родился ее первый ребенок, а спустя всего несколько недель после его рождения она отправилась искать тему для докторской диссертации. В конце концов, она решила изучать "урановые лучи", впервые описанные Анри Беккерелем (Henri Becquerel). Беккерель открыл эти лучи случайно, когда он оставил соли урана, завернув их в непрозрачный материал вместе с фотопластинками в темной комнате, а вернувшись, обнаружил, что фотопластинки полностью засвечены. Мари Кюри выбрала для изучения эти таинственные лучи для того, чтобы выявить и другие элементы, действующие подобным образом.

Уже на раннем этапе изучения Кюри поняла, что торий вырабатывает такие же лучи, как и уран. Она начала маркировать эти уникальные элементы, как "радиоактивные" и быстро осознала, что сила радиации, вырабатываемая ураном и торием, зависит от количества тория и урана. В конце концов, ей удастся доказать, что лучи – это свойства атомов радиоактивного элемента. Само по себе это было революционное открытие, но Кюри это остановило.

Она обнаружила, что настуран (уранинит) более радиоактивен, чем уран, это натолкнуло ее на мысль, что наверняка в естественных минералах существует неизвестный ей элемент. Ее муж Пьер присоединился к исследованиям, и они систематически уменьшали количества настурана до тех пор, пока не обнаружили новый изолированный элемент. Они назвали его полонием, в честь родины Марии Польши. Вскоре после этого, они обнаружили другой радиоактивный элемент, который они назвали радием, от латинского "луч". Кюри завоевала две Нобелевские премии за свою работу.

Собачьи дни

Знаете ли вы, что Иван Павлов, российский физиолог и химик, а также автор эксперимента по выработке у собак слюноотделения и прививания им условного рефлекса, совсем не был заинтересован в психологии или поведении? Его интересовали темы пищеварения и кровообращения. На самом деле, он изучал систему пищеварения собак, когда открыл то, что сегодня нам известно, как "условные рефлексы".

В частности, он пытался понять наличие взаимосвязи между слюноотделением и работой желудка. Незадолго до этого, Павлов уже отметил, что желудок не начинает переваривать пищу без слюноотделения, которое происходит в первую очередь. Другими словами, рефлексы в вегетативной нервной системе тесно связывают друг с другом эти два процесса. Далее Павлов решил узнать, смогут ли внешние раздражители повлиять на пищеварение аналогичным образом. Чтобы это проверить, он начал во время приема пищи собакой включать и выключать свет, тикать метрономом и сделал слышимым звучание зуммера. В отсутствии этих раздражителей, у собак происходило слюноотделение только тогда, когда они видели и ели пищу. Но спустя некоторое время, у них начиналось слюноотделение при стимуляции звуком и светом, даже если им в это время не давали еды. Павлов также обнаружил, что этот тип условного рефлекса умирает, если стимул слишком часто "неправильно" использовать. К примеру, если звуковой сигнал собака слышит часто, но при этом не получает еды, то через какое-то время, она перестает реагировать на звук слюноотделением.

Павлов опубликовал полученные результаты в 1903 году. Год спустя он получил Нобелевскую премию в области медицины, причем не за свою работу по условным рефлексам, а "в знак признания его работ по физиологии пищеварения, благодаря которым знания о жизненно-важных аспектах были преобразованы и расширены".

Эксперименты Стэнли Милграма (Stanley Milgram), которые он проводил в 1960-х годах, и по сей день квалифицируются как одни из самых известных и противоречивых научных экспериментов. Милграм хотел выяснить, как далеко сможет зайти обычный человек в причинении боли другому человеку под давлением авторитета. Вот что он сделал:

1. Милграм набрал добровольцев, обычных людей, которые должны были по приказу причинить другим добровольцам-актерам некоторую боль. Экспериментатор играл роль авторитета, который на время исследования постоянно присутствовал в помещении.

2. Авторитет перед началом каждого испытания продемонстрировал ничего не подозревавшим добровольцам, как пользоваться шок – аппаратом, который мог поражать человека разрядом в 15-450 вольт (повышенный уровень опасности).

3. Далее ученый отметил, что они должны протестировать, как шоковое потрясение может улучшить запоминание слов при помощи ассоциаций. Он поручил добровольцам в процессе эксперимента "награждать" добровольцев-актеров шоковыми ударами за неправильные ответы. Чем больше было неправильных ответов, тем выше уровень напряжения на аппарате. Причем, стоит отметить, что аппарат был сделан на высшем уровне: над каждым выключателем было написано соответствующее ему напряжение, от "слабого удара" до "труднопереносимого удара", прибор был оснащен множеством панелей со стрелочными вольтметрами. То есть усомниться в подлинности эксперимента у испытуемых не было возможности, причем исследование было построено так, что на каждый верный ответ было три ошибочных и авторитет говорил добровольцу каким "ударом" наказать "неспособного ученика".

4. "Учащиеся" кричали, когда получали шоковые удары. После того, как сила удара превышала 150 вольт, они требовали освобождения. При этом, авторитет призывал добровольцев продолжать эксперимент, не обращая внимания на требования "учащихся".

5. Некоторые участники эксперимента пожелали его покинуть после достижения наказания в 150 вольт, но большинство продолжали, пока не достигли максимального шокового уровня в 450 вольт.

По окончанию экспериментов, многие высказывались относительно неэтичности данного исследования, но полученные результаты были впечатляющими. Мильграм доказал, что обычные люди могут причинить боль невинному человеку просто потому, что получили такую команду от властного авторитета.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Есть очень простые опыты, которые дети запоминают на всю жизнь. Ребята могут не понять до конца, почему это все происходит, но, когда пройдет время и они окажутся на уроке по физике или химии, в памяти обязательно всплывет вполне наглядный пример.

сайт собрал 7 интересных экспериментов, которые запомнятся детям. Все, что нужно для этих опытов, - у вас под рукой.

Огнеупорный шарик

Понадобится : 2 шарика, свечка, спички, вода.

Опыт : Надуйте шарик и подержите его над зажженной свечкой, чтобы продемонстрировать детям, что от огня шарик лопнет. Затем во второй шарик налейте простой воды из-под крана, завяжите и снова поднесите к свечке. Окажется, что с водой шарик спокойно выдерживает пламя свечи.

Объяснение : Вода, находящаяся в шарике, поглощает тепло, выделяемое свечой. Поэтому сам шарик гореть не будет и, следовательно, не лопнет.

Карандаши

Понадобится: полиэтиленовый пакет, простые карандаши, вода.

Опыт: Наливаем воду в полиэтиленовый пакет наполовину. Карандашом протыкаем пакет насквозь в том месте, где он заполнен водой.

Объяснение: Если полиэтиленовый пакет проткнуть и потом залить в него воду, она будет выливаться через отверстия. Но если пакет сначала наполнить водой наполовину и затем проткнуть его острым предметом так, что бы предмет остался воткнутым в пакет, то вода вытекать через эти отверстия почти не будет. Это связано с тем, что при разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем случае, полиэтилен затягивается вокруг карандашей.

Нелопающийся шарик

Понадобится: воздушный шар, деревянная шпажка и немного жидкости для мытья посуды.

Опыт: Смажьте верхушку и нижнюю часть средством и проткните шар, начиная снизу.

Объяснение: Секрет этого трюка прост. Для того, чтобы сохранить шарик, нужно проткнуть его в точках наименьшего натяжения, а они расположены в нижней и в верхней части шарика.

Цветная капуста

Понадобится : 4 стакана с водой, пищевые красители, листья капусты или белые цветы.

Опыт : Добавьте в каждый стакан пищевой краситель любого цвета и поставьте в воду по одному листу или цветку. Оставьте их на ночь. Утром вы увидите, что они окрасились в разные цвета.

Объяснение : Растения всасывают воду и за счет этого питают свои цветы и листья. Получается это благодаря капиллярному эффекту, при котором вода сама стремится заполнить тоненькие трубочки внутри растений. Так питаются и цветы, и трава, и большие деревья. Всасывая подкрашенную воду, они меняют свой цвет.

Плавающее яйцо

Понадобится : 2 яйца, 2 стакана с водой, соль.

Опыт : Аккуратно поместите яйцо в стакан с простой чистой водой. Как и ожидалось, оно опустится на дно (если нет, возможно, яйцо протухло и не стоит возвращать его в холодильник). Во второй стакан налейте теплой воды и размешайте в ней 4-5 столовых ложек соли. Для чистоты эксперимента можно подождать, пока вода остынет. Потом опустите в воду второе яйцо. Оно будет плавать у поверхности.

Объяснение : Тут все дело в плотности. Средняя плотность яйца гораздо больше, чем у простой воды, поэтому яйцо опускается вниз. А плотность соляного раствора выше, и поэтому яйцо поднимается вверх.

Кристаллические леденцы

Понадобится : 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Опыт : В четверти стакана воды сварите сахарный сироп с парой столовых ложек сахара. Высыпьте немного сахара на бумагу. Затем нужно обмакнуть палочку в сироп и собрать ею сахаринки. Далее распределите их равномерно на палочке.

Оставьте палочки на ночь сушиться. Утром в 2 стаканах воды на огне растворите 5 стаканов сахара. Минут на 15 можно оставить сироп остывать, но сильно остыть он не должен, иначе кристаллы не будут расти. Потом разлейте его по банкам и добавьте разные пищевые красители. Заготовленные палочки опустите в банку с сиропом так, чтобы они не касались стенок и дна банки, в этом поможет бельевая прищепка.

Объяснение : С остыванием воды растворимость сахара понижается, и он начинает выпадать в осадок и оседать на стенках сосуда и на вашей палочке с затравкой из сахарных крупинок.

Зажженная спичка

Понадобятся : Спички, фонарик.

Опыт : Зажгите спичку и держите на расстоянии 10-15 сантиметров от стены. Посветите на спичку фонариком, и увидите, что на стене отражается только ваша рука и сама спичка. Казалось бы, очевидно, но я никогда об этом не задумывался.

Объяснение : Огонь не отбрасывает тени, так как не препятствует прохождению света сквозь себя.



Статьи по теме: