Индивидуальный тепловой пункт: схемы и решения. Принципиальная схема индивидуального теплового пункта

Индивидуальный тепловой пункт (ИТП) предназначен для распределения тепла с целью обеспечения отоплением и горячей водой жилого, коммерческого или производственного здания.

Основными узлами теплового пункта, подлежащими комплексной автоматизации, являются:

  • узел холодного водоснабжения (ХВС);
  • узел горячего водоснабжения (ГВС);
  • узел отопления;
  • узел подпитки контура отопления.

Узел холодного водоснабжения предназначен для обеспечения потребителей холодной водой с заданным давлением. Для точного поддержания давления обычно используется частотный преобразователь и датчик давления . Конфигурация узла ХВС может быть различной:

  • (автоматический ввод резерва).

Узел ГВС обеспечивает потребителей горячей водой. Основной задачей является поддержание заданной температуры при изменяющемся расходе. Температура не должна быть слишком горячей или холодной. Обычно в контуре ГВС поддерживается температура 55 °С.

Теплоноситель, поступающий из теплосети, проходит через теплообменник и нагревает воду во внутреннем контуре, поступающую к потребителям. Регулирование температуры ГВС производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя и регулирует его расход с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре (после теплообменника) обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел отопления предназначен для поддержания температуры в отопительной системе здания. Уставка температуры в контуре формируется в зависимости от температуры воздуха на улице (наружного воздуха). Чем холоднее на улице тем горячее должны быть батареи. Зависимость между температурой в контуре отопления и температурой наружного воздуха определяется отопительным графиком, который должен настраиваться в системе автоматики.

Кроме регулирования температуры, в контуре отопления должна быть реализована защита от превышения температуры воды, возвращаемой в теплосеть. Для этого используется график обратной воды.

Согласно требованиям тепловых сетей, температура обратной воды не должна превышать значений, заданных в графике обратной воды.

Температура обратной воды является показателем эффективности использования теплоносителя.

Кроме описанных выше параметров, существуют дополнительные методы повышения эффективности и экономичности теплового пункта. Ими являются:

  • сдвиг графика отопления в ночное время;
  • сдвиг графика в выходные дни.

Данные параметры позволяют оптимизировать процесс потребления тепловой энергии. Примером может служить коммерческое здание, работающее в будние дни с 8:00 до 20:00. Снизив температуру отопления ночью и выходные дни (когда организация не работает), можно добиться экономии на отоплении.

Контур отопления в ИТП может быть подключен к теплосети по зависимой схеме или независимой. При зависимой схеме вода из теплосети подается в батареи без использования теплообменника. При независимой схеме теплоноситель через теплообменник подогревает воду во внутреннем контуре отопления.

Регулирование температуры отопления производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя. При зависимой схеме клапан непосредственно регулирует количество подаваемого теплоносителя в батареи отопления. При независимой схеме клапан регулирует расход теплоносителя с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел подпитки контура отопления предназначен для поддержания требуемого давления в контуре отопления. Подпитка включается в случае падения давления в контуре отопления. Подпитка осуществляется при помощи клапана, либо насосов (одного или двух). Если используются два насоса, то для равномерного износа они чередуются по времени. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Типовые примеры и описание

Управление тремя насосными группами: отопления, ГВС и подпитки:

  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контура отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.

Управление четырьмя насосными группами: отопления, ГВС1, ГВС2 и подпитки:

Управление пятью насосными группами: отопления 1, отопления 2, ГВС, подпитки 1 и подпитки 2:

  • каждая насосная группа может состоять из одного или двух насосов;
  • временные интервалы работы для каждой насосной группы настраиваются независимо.

Управление шестью насосными группами: отопления 1, отопления 2, ГВС 1, ГВС 2, подпитки 1 и подпитки 2:

  • при использовании двух насосов производится их автоматическое чередование через заданные промежутки времени для равномерного износа, а также аварийное включение резерва (АВР) при выходе насоса из строя;
  • для контроля исправности насосов используется контактный датчик («сухой контакт»). В качестве датчика может выступать датчик-реле давления, реле перепада давления, электроконтактный манометр или реле протока;
  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контуров отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.

Схема работы ИТП построена на простом принципе поступления воды из труб в подогреватели системы снабжения горячей водой, а также отопительной системы. По обратному трубопроводу вода идет для вторичного использования. В систему холодная вода подается через систему насосов, также в системе вода распределяется на два потока. Первый поток уходит из квартиры, второй направлен в циркуляционный контур системы системы снабжения горячей водой для разогрева и последующего распределения горячей воды и отопления.

Схемы ИТП : различия и особенности индивидуальных тепловых пунктов

Индивидуальный тепловой пункт для системы снабжения горячей водой обычно имеет смеху, которая является:

  1. Одноступенчатой,
  2. Параллельной,
  3. Независимой.

В ИТП для системы отопления может быть использована независимая схема , там использован только пластинчатый теплообменник, который может выдержать полную нагрузку. Насос, обычно в этом случае сдвоенный, имеет функцию компенсировать потери давления, а из обратного трубопровода подпитывается система отопления. Этот вид ИТП имеет прибор учета тепловой энергии. Данная схема оснащена двумя пластинчатыми теплообменниками, каждый их которых рассчитан на пятидесятипроцентную нагрузку. Для того чтобы компенсировать потери давления в этой схеме можно использовать несколько насосов. Систему горячего водоснабжения подпитывает система снабжения холодной водой. ИТП для системы отопления и системы горячего водоснабжения собран по независимой схеме. В этой схеме ИТП с теплообменником используется всего один пластинчатый теплообменник . Он рассчитан на все 100% нагрузки. Для того чтобы компенсировать потери давления, используется несколько насосов.

Для системы горячего водоснабжения используется независимая двухступенчатая система, в которой задействованы два теплообменника. Постоянное подпитывание системы отопления осуществляется при помощи обратного трубопровода тепловой семи, также в этой системе задействованы подпиточные насосы. ГВС в этой схеме подпитывается из трубопровода с холодной водой.

Принцип работы ИТП многоквартирного дома

Схема ИТП многоквартирного дома основана на том, что по ней максимально эффективно должно передаваться тепло. Поэтому, по этой схеме оборудование ИТП должно размещаться так, чтобы максимально избежать потерь тепла и при этом эффективно распределить энергию по всем помещениям многоквартирного дома. При этом в каждой квартире температура воды должна быть определенного уровня и вода должна течь с необходимым напором. При регулировании заданной температуры и контроля за давлением, каждая квартира многоквартирного дома получает тепловую энергию в соответствии с распределением ее между потребителями в ИТП при помощи специального оборудования. Благодаря тому, что это оборудование работает автоматически и автоматизировано управляет всеми процессами, возможность аварийных ситуаций при использовании ИТП сведена к минимуму. Отапливаемая площадь жилья многоквартирного дома, а также и конфигурации внутренней теплосети – именно эти факты в первую очередь учитываются при обслуживании ИТП и УУТЭ , а также разработке узлов учета тепловой энергии.

ИТП – это индивидуальный тепловой пункт, такой есть обязательно в каждом здании. Практически никто в разговорной речи не говорит — индивидуальный тепловой пункт. Говорят просто — тепловой пункт, или еще чаще теплоузел. Итак, из чего же состоит тепловой пункт, как он работает? В тепловом пункте много разного оборудования, арматуры, сейчас практически обязательно — приборы учета тепла.Только там, где нагрузка совсем небольшая, а именно меньше чем 0,2 Гкал в час, закон об энергосбережении, вышедший в ноябре 2009 года, позволяет не ставить учет тепла.

Как мы видим из фото, в ИТП заходят два трубопровода – подача и обратка. Рассмотрим все последовательно. На подаче (это верхний трубопровод) обязательно на вводе в теплоузел стоит задвижка, она так и называется – вводная. Задвижка эта обязательно должна быть стальная, ни в коем случае не чугунная. Это один из пунктов «Правил технической эксплуатации тепловых энергоустановок», которые были введены в действие с осени 2003 года.

Связано это с особенностями централизованного теплоснабжения, или центрального отопления, другими словами. Дело в том, что такая система предусматривает большую протяженность, и много потребителей от источника теплоснабжения. Соответственно, чтобы у последнего по очереди потребителя хватало давления, на начальных и далее участках сети держат давление повыше. Так, например, мне в работе приходится сталкиваться с тем, что в теплоузел приходит давление 10-11 кгс/см² на подаче. Чугунные задвижки могут и не выдержать такого давления. Поэтому, от греха подальше, по «Правилам технической эксплуатации» решено от них отказаться. После вводной задвижки стоит манометр. Ну с ним все понятно, мы должны знать давление на вводе в здание.

Затем грязевик, назначение его становится понятно из названия – это фильтр грубой очистки. Кроме давления, мы должны еще обязательно знать и температуру воды в подаче на вводе. Соответственно, обязательно должен быть термометр, в данном случае термометр сопротивления, показания которого выведены на электронный тепловычислитель. Далее следует очень важный элемент схемы теплоузла – регулятор давления РД. Остановимся на нем поподробнее, для чего он нужен? Я уже писал выше, что давления в ИТП приходит с избытком, его больше, чем нужно для нормальной работы элеватора (о нем чуть позже), и приходится это самое давление сбивать до нужного перепада перед элеватором.

Иногда даже бывает так, мне приходилось сталкиваться, что давления на вводе так много, что одного РД мало и приходится еще ставить шайбу (регуляторы давления тоже имеют предел сбрасываемого давления), в случае превышения этого предела начинают работать в режиме кавитации, то есть вскипания, а это вибрация и т.д. и т.п. Регуляторы давления тоже имеют много модификаций, так есть РД, у которых две импульсные линии (на подаче и на обратке), и таким образом они становятся и регуляторами расхода. В нашем случае это это так называемый регулятор давления прямого действия «после себя», то есть он регулирует давление после себя,что нам собственно и нужно.



И еще про дросселирование давления. До сих пор иногда приходится видеть такие теплоузлы, где сделано шайбирование ввода, то есть когда вместо регулятора давления стоят дроссельные диафрагмы, или проще говоря, шайбы. Очень не советую такую практику, это каменный век. В этом случае у нас получается не регулятор давления и расхода, а попросту ограничитель расхода, не более того. Подробно расписывать принцип действия регулятора давления «после себя» не стану, скажу только, что принцип этот основан на уравновешивании давления в импульсной трубке (то есть давления в трубопроводе после регулятора) на диафрагму РД силой натяжения пружины регулятора. И это давление после регулятора (то есть после себя) можно регулировать, а именно выставлять больше или меньше с помощью гайки настройки РД.

После регулятора давления стоит фильтр перед счетчиком потребления теплоэнергии. Ну думаю, функции фильтра понятны. Немного о теплосчетчиках. Счетчики существуют сейчас разных модификаций. Основные типы счетчиков: тахометрические (механические), ультразвуковые, электромагнитные, вихревые. Так что выбор есть. В последнее время большую популярность приобрели электромагнитные счетчики. И это неспроста, есть у них ряд преимуществ. Но в данном случае у нас счетчик тахометрический (механический) с турбиной вращения, сигнал с расходомера выведен на электронный тепловычислитель. Затем после счетчика теплоэнергии идут ответвления на вентиляционную нагрузку (калориферы), если она есть, на нужды горячего водоснабжения.


На горячее водоснабжение идут две линии с подачи и с обратки, и через регулятор температуры ГВС на водоразбор. О нем я писал в В данном случае регулятор исправный, рабочий, но так как система ГВС тупиковая, эффективность его снижается. Следующий элемент схемы очень важный, пожалуй, самый важный в теплоузле – это можно сказать, сердце отопительной системы. Я говорю об узле смешения – элеваторе. Схема зависимая со смешением в элеваторе была предложена выдающимся нашим ученым В.М.Чаплиным, и стала повсеместно внедряться в капитальном строительстве с 50х годов по самый закат Советской империи.

Правда, Владимир Михайлович предлагал со временем (при удешевлении электроэнергии) заменить элеваторы смесительными насосами. Но про эти его идеи как то забыли. Элеватор состоит из нескольких основных частей. Это всасывающий коллектор (вход с подачи), сопло (дроссель), камера смешения (средняя часть элеватора, где смешиваются два потока и подравнивается давление), приемная камера (подмес с обратки), и диффузор (выход с элеватора непосредственно в теплосеть с установившимся давлением).


Немного о принципе работы элеватора, его преимуществах и недостатках. Работа элеватора основана на основном, можно сказать, законе гидравлики – законе Бернулли. Который, в свою очередь, если обойтись без формул гласит о том, что сумма всех давлений в трубопроводе – динамического давления (скорости), статического давления на стенки трубопровода и давления веса жидкости всегда остается постоянной, при любых изменениях потока. Так как мы имеем дело с горизонтальным трубопроводом, то давлением веса жидкости приблизительно можно пренебречь. Соответственно, при снижении статического давления, то есть при дросселировании через сопло элеватора, возрастает динамическое давление (скорость), при этом сумма этих давлений остается неизменной. В конусе элеватора образуется разрежение, и вода из обратки подмешивается в подачу.

То есть элеватор работает как смесительный насос. Вот так все просто, никаких насосов с электроприводом и т.д. Для недорогого капитального строительства с высокими темпами, без особого учета теплоэнергии — самый верный вариант. Так и было в советское время и это было оправдано. Однако у элеватора есть не только достоинства, но и недостатки. Основных два: для его нормальной работы перед ним нужно держать относительно высокий перепад давления (а это соответственно сетевые насосы с большой мощностью и немалый расход электроэнергии), и второй и самый главный недостаток — механический элеватор практически не подается регулировке. То есть, как выставили сопло, в таком режиме он и будет работать весь отопительный сезон, и в мороз и в оттепель.

Особенно ярко этот недостаток проявляется на «полочке» температурного графика, об этом я . В данном случае на фото у нас погодозависимый элеватор с регулируемым соплом, то есть внутри элеватора игла ходит в зависимости от температуры на улице, и расход либо увеличивается, либо уменьшается. Это более модернизированный вариант по сравнению с механическим элеватором. Это тоже, на мой взгляд, не самый оптимальный, не самый энергоемкий вариант, но об этом не в этой статье. После элеватора, собственно, вода идет уже непосредственно к потребителю, и сразу за элеватором стоит домовая задвижка подачи. После домовой задвижки манометр и термометр, давление и температуру после элеватора нужно знать и контролировать обязательно.


На фото еще и термопара (термометр) для измерения температуры и выдачи значения температуры в контроллер, но если элеватор механический, ее соответственно нет. Далее идет уже разветвление по веткам потребления, и на каждой ветке тоже по домовой задвижке. Движение теплоносителя по подаче в ИТП мы рассмотрели, теперь об обратке. Сразу на выходе обратки с дома в теплоузел устанавливается предохранительный клапан. Назначение предохранительного клапана – сбросить давление в случае превышение нормируемого давления. То есть при превышении этой цифры (для жилых домов 6 кгс/см² или 6 бар) клапан срабатывает и начинает сбрасывать воду. Таким образом мы предохраняем внутреннюю систему отопления, особенно радиаторы от скачков давления.

Далее идут домовые задвижки, в зависимости от количества веток отопления. Также должен быть манометр, давление с дома тоже нужно знать. Кроме того по разнице показаний манометров на подаче и обратке с дома можно очень приблизительно прикинуть сопротивление системы, проще говоря потери давления. Затем следует подмес с обратки в элеватор, ветки нагрузки на вентиляцию с обратки, грязевик (про него я писал выше). Далее ответвление с обратки на горячее водоснабжение, на котором в обязательном порядке должен быть установлен обратный клапан.

Функция клапана в том, что он пропускает поток воды только в одном направлении, обратно вода течь не может. Ну и далее по аналогии с подачей фильтр на счетчик, сам счетчик, термометр сопротивления. Далее вводная задвижка на обратке и после нее манометр, давление, которое уходит от дома в сеть, тоже нужно знать.

Мы рассмотрели стандартный индивидуальный тепловой пункт зависимой системы отопления с элеваторным подключением, при открытом водоразборе горячей воды, горячее водоснабжение по тупиковой схеме. Незначительные отличия в разных ИТП при такой схеме могут быть, но основные элементы схемы обязательны.

По вопросам приобретения любого тепломеханического оборудования в ИТП можно обращаться непосредственно ко мне по эл.адресу: [email protected]

Совсем недавно я написал и выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Устройство ИТП (тепловых пунктов) зданий.

Буду рад комментариям к статье.

Билет №1

1. Источниками энергии, в том числе и тепловой, могут служить вещества, энергетический потенциал которых достаточен для последующего преобразования их энергии в другие ее виды с целью последующего целенаправ­ленного использования. Энергетический потенциал веществ является параметром, позволяющим оценить прин­ципиальную возможность и целесообразность их использования как источников энергии, и выражается в едини­цах энергии: джоулях (Дж) или киловатт (тепловых)-часах [кВт(тепл.) -ч] *.Все источники энергии условно делят на первичные и вторичные (рис. 1.1). Первичными источниками энергии называют вещества, энергетический потенциал которых является следствием природных процесов и не зависит от деятельности человека. К первичным источникам энергии относятся: ископаемые горючие и расщепляющиеся вещества, нагретые до высокой температуры воды недр Земли (термальные воды), Солнце, ветер, реки, моря, океаны и др. Вторичными источниками энергии называют вещества, обладающие определенным энергетическим потенциалом и являющиеся побочными продуктами деятельности человека; например, отработавшие горючие органические вещества, городские отходы, горячий отработанный теплоноситель промышленных производств (газ, вода, пар), нагретые вентиляционные выбросы, отходы сельскохозяйственного производства и др.Первичные источники энергии условно разделяют на невозобновляющиеся, возобновляющиеся и неисчерпае­мые. К ^возобновляющимся первичным источникам энергии относят ископаемые горючие вещества: уголь, нефть, газ, сланец, торф и ископаемые расщепляющиеся вещества: уран и торий. К возобновляющимся первичным источникам энергии относят все возможные источники энергии, являющиеся продуктами непрерывной деятельности Солнца и природных процессов на поверхности Земли: ветер, водные ресурсы, океан, растительные продукты биологической деятельности на Земле (древесину и другие растительные вещества), а также и Солнце. К практически неисчерпаемым первичным источникам энергии относят термальные воды Земли и вещества, которые могут быть источниками получения термоядерной энергии.Ресурсы первичных источников энергии на Земле оцениваются общими запасами каждого источника и его энергетическим потенциалом, т. е. количеством энергии, которая может быть выделена из единицы его массы. Чем выше энергетический потенциал вещества, тем выше эффективность его использования как первичного источника энергии и, как правило, тем большее распространение оно получило при производстве энергии. Так, например, нефть имеет энергетический потенциал, равный 40 000-43 000 МДж на 1 т массы, а природный и попутный газы - от 47 210 до 50 650 МДж на 1 т массы, что в сочетании с их относительно невысокой стоимостью добычи сделало возможным их быстрое распространение в 1960-1970-х годах как первичных источников тепловой энергии.Использование ряда первичных источников энергии до последнего времени сдерживалось либо сложностью тех­нологии преобразования их энергии в тепловую энергию (например, расщепляющиеся вещества), либо относи­тельно низким энергетическим потенциалом первичного источника энергии, что требует больших затрат на полу­чение тепловой энергии нужного потенциала (например, использование солнечной энергии, энергии ветра и др.). Развитие промышленности и научно-производственного потенциала стран мира привело к созданию и реализа­ции процессов производства тепловой энергии из ранее неразрабатывавшихся первичных источников энергии, в том числе к созданию атомных станций теплоснабжения, солнечных генераторов теплоты для теплоснабжения зданий, теплогенераторов на геотермальной энергии.



Принципиальная схема тэс


2.Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.Основными задачами ТП являются:

Преобразование вида теплоносителя

Контроль и регулирование параметров теплоносителя

Распределение теплоносителя по системам теплопотребления

Отключение систем теплопотребления

Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Учет расходов теплоносителя и тепла

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Билет №3

Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП

Различают зависимые и независимые схемы присоединения систем отопления:

Независимая (закрытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления

Зависимая (открытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.

Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.

2. Принцип действия МГД-генератора. Схема ТЭС с МГД.

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

Рабочим телом МГД-генератора могут служить следующие среды:

· Электролиты

· Жидкие металлы

· Плазма (ионизированный газ)

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла , которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю.

Электростанции с магнитогидродинамическими генераторами (МГД-генераторами) . МГД - генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500-3000 К, недоступные для обычных котлов.

Принципиальная схема ТЭС с МГД - установкой показана на рисунке. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К 2 СО 3), направляются в МГД - канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный ток и направляется в энергосистему потребителям.

Принципиальная схема КЭС с МГД-генератором:
1 - камера сгорания; 2 – МГД - канал; 3 - магнитная система; 4 - воздухоподогреватель,
5 - парогенератор (котел); 6 - паровые турбины; 7 - компрессор;
8 - конденсатный (питательный) насос.

Билет №4

1.Классификация систем теплоснабжения

Принципиальные схемы систем теплоснабжения по способу подключения к ним систем отопления

По месту выработки теплоты системы теплоснабжения делятся на:

· Централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);

· Местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).

По роду теплоносителя в системе:

· Водяные;

· Паровые.

По способу подключения системы отопления к системе теплоснабжения:

· зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый по тепловым сетям, поступает непосредственно в теплопотребляющие приборы);

· независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

· закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);

· Открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).



Статьи по теме: