Какой дроссель установить в сетевом фильтре 220в. Самодельный сетевой фильтр из доступных деталей

Для предотвращения помех от электро - и радиоприборов необходимо снабдить их фильтром для подавления помех от питающей сети, расположенным внутри аппаратуры, что позволяет бороться с помехами в самом их источнике.

Если не удастся отыскать готовый фильтр, его можно сделать самостоятельно. Схема помехоподавляющего фильтра представлена на рисунке ниже:

Фильтр двухкаскадный. Первый каскад выполнен на основе продольного трансформатора (двухобмоточного дросселя) Т1, второй представляет собой высокочастотные дроссели L1 и L2. Обмотки трансформатора Т1 включены последовательно с линейными проводами питающей сети. По этой причине низкочастотные поля частотой 50 Гц в каждой обмотке имеют противоположные направления и взаимно компенсируют друг друга. При воздействии помехи на провода питания, обмотки трансформатора оказываются включенными последовательно, а их индуктивное сопротивление XL растет с увеличением частоты помех: XL = ωL = 2πfL, f - частота помех, L - индуктивность включенных последовательно обмоток трансформатора.

Сопротивление конденсаторов C1, С2, наоборот, уменьшается с ростом частоты (Хс =1/ωС =1/2πfC), следовательно, помехи и резкие скачки «закорачиваются» на входе и выходе фильтра. Такую же функцию выполняют конденсаторы СЗ и С4.

Дроссели LI, L2 представляют еще одно последовательное дополнительное сопротивление для высокочастотных помех, обеспечивая их дальнейшее ослабление. Резисторы R2, R3 уменьшают добротность L1, L2 для устранения резонансных явлений.

Резистор R1 обеспечивает быстрый разряд конденсаторов C1-С4 при отключении сетевого шнура от питающей сети и необходим для безопасного обращения с устройством.

Детали сетевого фильтра размещены на печатной плате, показанной на рисунке ниже:


Печатная плата рассчитана на установку промышленного продольного трансформатора от блоков персональных компьютеров. Можно изготовить трансформатор самостоятельно, выполнив его на ферритовом кольце проницаемостью 1000НН...3000НН диаметром 20...30 мм. Кромки кольца обрабатывают мелкозернистой шкуркой, после чего кольцо обматывают фторопластовой лентой. Обе обмотки наматывают в одном направлении проводом ПЭВ-2 диаметром 0,7 мм и имеют по 10...20 витков. Обмотки размещены строго симметрично на каждой половине кольца, зазор между выводами должен быть не менее 3...4 мм. Дроссели L2 и L3 также промышленного производства, намотаны на ферритовых сердечниках диаметром 3 мм и длиной 15 мм. Каждый дроссель содержит три слоя провода ПЭВ-2 диаметром 0,6 мм, длина намотки 10 мм. Чтобы витки не сползали, дроссель пропитан эпоксидным клеем. Параметры намоточных изделий выбраны из условия максимальной мощности фильтра до 500 Вт. При большей мощности размеры сердечников фильтра и диаметр проводов необходимо увеличить. Придется изменить и размеры печатной платы, однако всегда следует стремиться к компактному размещению элементов фильтра.

Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.

Основные схемы сглаживающих фильтров питания

1. Ёмкость 2. Г-образный 3. Т-образный 4. П-образный

Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие: 1 / (ωС)

Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку R н и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает.

Чем больше емкость С и сопротивление нагрузки R н , тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения U ср к максимальному значению синусоиды U max . Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное U max , без всяких пульсаций.

Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.

Если пульсации должны быть малыми, или сопротивление нагрузки R н мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.

Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии.

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.

Определение выходного напряжения выпрямителя и выбор сглаживающего фильтра для блока вторичного питания

К описанному в статье, следует добавить важную информацию, используемую для конструирования источников (блоков) питания постоянного тока:

1. Любой p-n переход, любого полупроводникового прибора, в том числе диода имеет характеристику – падение напряжения на переходе. Это напряжение обычно указывают в справочниках. Для германиевых диодов оно может быть от 0,3 вольт до 0,5 вольт, а для кремниевых диодов – от 0,6 вольт до 1,5 вольт.

Это значит, что если мы возьмём трансформатор с выходным напряжением 6,3 вольта, выпрямим его однофазным двухполярным мостовым выпрямителем (диодным мостом) у которого на каждом диоде по справочнику падает по 1 вольту (U пр. = 1 В), то на выходе выпрямителя мы получим всего лишь 4,3 вольта. Напряжение в 2 вольта «потеряется» на 2-х диодах по пути прохождения тока. Начинающие радиолюбители обычно этого не учитывают, потому и недоумевают, почему на выходе маленькое напряжение.

2. Переменный электрический ток измеряется приборами, которые, как правило, показывают его среднее значение, а не максимальное. Максимальное значение переменного напряжения это – значение электрического напряжения соответствующее его максимальному значению синусоиды.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению: U ср = U max / π = 0,318 * U max

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению: U ср = 2 U max / π = 0,636 * U max

Значение среднего напряжения - 0,636 за счёт особенностей конструкции измерительных приборов округляется и принимается равной 0,7.

3. Исходя из изложенного выше, можно сделать вывод, который справедлив в том случае, когда нагрузка на блок питания маленькая. Обратите внимание на рисунки ниже.

Выходное напряжение выпрямителей с фильтром питания:

а) с большой нагрузкой:

б) с маленькой нагрузкой:

Эти рисунки поясняют, что при малой нагрузке выходное напряжение выпрямителя с фильтром питания равно максимальной амплитуде синусоиды поступающей на выпрямитель, за вычетом падения напряжения на диодах.

Пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания

Рассмотрим случай со средним переменным напряжением на выходе трансформатора, измеренным мультиметром равным 6,3 вольта , и нагрузкой (сопротивлением нагрузки) равной 200 Ом .

Выходное напряжение c мостового выпрямителя будет определено следующим образом:

Максимальное напряжение на выходе трансформатора:

U max = U изм / 0,7 = 6,3в / 0,7 = 9 вольт

Максимальное выходное напряжение на выходе выпрямителя:

U вых. = U max – U VD1 – U VD2 = 9 – 1 – 1 = 7 вольт

Емкость сглаживающего конденсатора выбираем из условия:

1 / (2*π*f*С) н

, откуда 1 / (2*π*f *R н )

Подставим данные:

1/(2*3,14*50*200) = 1,59*10 -5 (Фарад) = 15,9 мкФ

Учитывая условие, при котором емкость конденсатора должна быть намного больше полученному по приведенному условию, выбираем конденсатор ёмкостью более чем в пять раз больше расчётного значения - 100 мкФ*16 вольт .

Схема, состоящая из трансформатора, выпрямителя и сглаживающего фильтра является источником нестабилизированного питания. От таких источников можно питать любые устройства, потребляющие слабый ток, не критичные к наличию пульсаций и нестабильности питающего напряжения. Для максимального подавления пульсаций и стабилизации питающего напряжения применяют

Данное устройство предназначено для защиты холодильников и другой электроаппаратуры от всплесков напряжения сети. Оно также снижает уровень сетевых помех, создаваемых холодильными агрегатами при включении и выключении. Принципиальная схема сетевого фильтра представлена на рисунке, который вы видите ниже:

Напряжение сети (220 B) через плавкий предохранитель FU1 поступает на LС-фильтр С1-L1-C2-RU1. Конденсаторы с дросселем подавляют в широком диапазоне частот импульсные помехи, как поступающие из сети к нагрузке, так и создаваемые самой нагрузкой. Последние могут вызвать сбои в работе электронного оборудования. Варистор RU1 гасит высоковольтные выбросы в сети питания которые могут привести к пробою изоляции обмоток электродвигателя холодильного агрегата. Если длительность высоковольтного импульса не превышает единиц миллисекунд, варистор способен погасить его без собственного повреждения. При более длительных повышениях напряжения, например, когда из-за аварии напряжение сети повышается до 320...450 B, варистор пробивается, что приводит к перегоранию предохранителя FU1, в ре-зультате фильтр и нагрузка обесточиваются. Примененный варистор открывается при амплитуде напряжения около 430 B, что соответствует действующему значению напряжения сети около 300 B. Собственная емкость такого варистора - около 900 пФ.

При напряжении сети более 260...270 B (но менее 300...320 B) возможен нагрев варистора без его повреждения. Сверх яркий светодиод синего цвета HL1 сигнализирует o наличии напряжения и исправности фильтра, резистор R1 разряжает конденсаторы С1, C2 при отключении фильтра от сети. Диод VD2 защищает светодиод от пробоя обратным напряжением, что нередко случается co cветодиодами синего и белого цвета при питании переменным напряжением даже при наличии выпрямительного диода VD1. Устройство собрано в корпусе размерами 110х58х48 мм. Все сильноточные цепи выполнены проводом сечением не менее 0,75 мм2. Дроссель L1 содержит 20 витков, намотанных проводом ПЭВ-2 0,82 мм в один ряд на ферритовом кольце размерами 24х14х10 мм. Кольцо использовано от фильтра выходных напряжений компьютерного блока питания. Можно применить любой другой дроссель аналогичной конструкции индуктивностью 30...500 мкГн с сопротивлением обмотки постоянному току не более 100 мОм. Например, намотать его на кольце раз мерами К28х16х6 из феррита 2000НН. Между началом и концом обмотки необходимо оставить зазор около 5 мм. Конденсаторы применены импортные, рассчитанные на рабочее напряжение 275 B (переменного тока). Вместо таких конденсаторов можно применить отечественные, типов К73-17, К73-24, на рабочее напряжение 630 B. Резисторы - МЛТ, ОМЛТ, 02-23, 02-33. Диод КД209А можно заменить любым из серии КД209 или импортным 1N4004, 1 N4005, 1 N4006. Вместо диода 1N914 можно применить 1N4148 или любой из серий КД512, КД521, КД522. Светодиод подойдет любой общего применения, желательно c повышенной светоотдачей, например, из серий КИПД40, L-1513. Варистор FNR-20К431 можно заменить на любой, имеющий в маркировке символы "20К431" или "20N471" (20-это диаметр варистора в миллиметрах, 431 - напряжение срабатывания варистора - 430 B).

Поскольку конструкция предназначена для непрерывной круглосуточной работы, применять менее мощные варисторы (меньшего диаметра) нежелательно. Варистор лучше всего смонтировать так, чтобы его при необходимости можно было заменить, не вынимая монтажную плату из корпуса. Корпус варистора желательно неплотно обернуть тонкой асбестовой бумагой или стеклотканью (без пропитки смолой). Предохранитель FU1 - любой плавкий на рабочее напряжение 250 B и ток 6...8 A. Современные холодильники во время работы компрессора потребляют от сети ток не более 1...2 A, но предохранитель, рассчитанный на значительно больший ток, необходим по той причине, что в момент включения компрессора (примерно в течение 1 c) потребляемый ток в несколько раз больше.



Бытовые холодильники и другие приборы постепенно усложняются и превращаются в многофункциональные дорогостоящие агрегаты, поэтому их защита от перенапряжении и помех становится все более актуальной.

Фильтрация помех по питанию является важным, хотя и не единственным средством повышения устойчивости работы МК. Это, как правило, первая ступень, которую надо обязательно пройти до конца. Обычно используют пассивные RC- и LC-фильтры, гораздо реже — активные транзисторные фильтры.

Если нельзя устранить причину помехи (с чего, по идее, и надо начинать анализ), то пытаются устранить следствие, т.е. ставят заградительные фильтры (Рис. 6.22, а…м). Окончательный вердикт об эффективности того или иного технического решения может дать лишь практика или детальное компьютерное моделирование реальных условий работы. Стоит только отметить, что МК и присоединяемые к нему импульсные узлы, сами могут являться довольно серьёзным источником помех. Следовательно, вторая функция заградительных фильтров заключается в уменьшении уровня не только «входящих», но и «исходящих» помех.

Рис. 6.22. Схемы фильтров по питанию (начало):

а) в непосредственной близости от выводов стабилизатора напряжения AI размещаются два конденсатора: электролитический C1 большой ёмкости для фильтрации НЧ-помех и керамический С2 малой ёмкости для фильтрации ВЧ-помех;

б) аналогично Рис. 6.22, а, но с LC-фильтром. Как следствие, «скругляется» форма пульсаций выходного напряжения;

в) аналогично Рис. 6.22, а, но с тремя конденсаторами разной ёмкости, каждый из которых действует в своей частотной области. Экспериментально следует подобрать оптимальные места установки конденсаторов на печатной плате, что позволяет заметно снизить амплитуду пульсаций;

г) разделение двух «пятивольтовых» каналов питания через LC-фильтры. Один из каналов может обслуживать цифровую, а другой канал — аналоговую часть устройства;

Рис. 6.22. Схемы фильтров по питанию (продолжение):

д) снижение сетевых пульсаций и уровня шума в цепи питания методом фазовой компенсации. Транзистор VT1 усиливает переменную составляющую пульсаций, инвертирует её и частично компенсирует в точке соединения резисторов R2, R4

е) аналогично Рис. 6.22, д, но на составных транзисторах VTI, VT2, что актуально для больших токов нагрузки;

ж) транзисторный фильтр на основе эмиттерного повторителя VTI, который ставится после диодного выпрямителя для снижения пульсаций сетевой частоты 50/100 Гц;

з) трансформатор 77 снижает уровень синфазных помех. Если это не помогает, то можно изменить полярность включения одной (любой) обмотки трансформатора 77 на противоположную (снижение уровня противофазных помех);

и) аналогично Рис. 6.22, з, но для бортовой сети автомобиля. Трансформатор Т1 (точнее, двойной дроссель) разделяет «электрическую массу» шасси автомобиля и общий провод устройства:

Рис. 6.22. Схемы фильтров по питанию (окончание):

к) комплексная фильтрация и защита гальванически изолированного DC/DC-преобразова-теля напряжения А1 в условиях сильных промышленных помех. Резистор RJ ограничивает ток через сапрессор VD1 при всплесках напряжения. Стабилитрон VD2 ограничивает в аварийной ситуации выходное напряжение на уровне +5.6 В, но он может выйти из строя при длительном протекании большого тока;

л) многоступенчатая система снижения ВЧ-помех на выходе +£’11ИТ. Фильтруются помехи как излучаемые в сеть 220 В, так и принимаемые из нее. Первая ступень заграждения — C1, 77, С2, вторая ступень — СЗ…С6, третья ступень — RI, С7;

м) сеть 220 В подключается к трансформатору Т1, а сетевой источник питания для МК подключается к трансформатору Т2. Связка элементов Т1, C1, Т2 образует LC-фильтр, который уменьшает импульсные помехи, возникающие при включении мощных бытовых приборов, например, холодильника, утюга или СВЧ-печи. Схема обладает стабилизирующим свойством — на входе переменное напряжение 190…250 В, а на выходе 216…228 В. Расчётные мощности трансформаторов Т1, Т2 должны быть больше мощности нагрузки. Если применяются трансформаторы с коэффициентом передачи 1:1, то конденсатор C1 ставят на напряжение 630 В.

Для чего нужны сетевые фильтры? Почему их установка спасает бытовые электронные приборы? Насколько необходим этот прибор в сети переменного тока? И, вообще, сетевой фильтр – что это такое? Эти вопросы сегодня волнуют многих обывателей, которые столкнулись с проблемой некорректной работы бытовых приборов и даже полным отключением их в некоторых ситуациях. Поэтому поговорим об этом приборе и разберемся в его функциональности, заодно ответим на вопрос, зачем нужен сетевой фильтр?

Немного теории

Из школьного курса физики известно, что ток переменного типа в сети дома является синусоидальным. То есть, сила тока и его напряжение меняются по синусоиде, где центральная ось, вокруг которой происходят колебания, это время. Эти колебания симметричные. Так вот за 1 секунду разница значений напряжения попадает в предел от +310 В до -310 В. И этих колебания за секунду происходит 50 раз, что и является напряжением 220 В. 50 колебаний измеряются герцами. Кстати, в зарубежных сетях этот показатель равен 60 герцам.

Конечно, симметрия колебаний – это идеал, до которого нашим сетям далеко. Скачки, импульсы, искажение синусоиды по длине и высоте – это всего лишь малая часть того, что творится в наших сетях переменного тока. Конечный результат такой чехарды – выход из строя бытовой техники. Чаще всего от этого страдают телевизоры, компьютеры, музыкальные центры, радиотелефоны и прочие.

Что же является причинами искажения синусоиды?

  • Атмосферное перенапряжение.
  • Пуск или остановка мощных электропотребителей. К примеру, водяного насоса, которым производят полив сада или огорода.
  • Короткое замыкание в подстанции на высокой ее стороне.
  • Всевозможные переходные процессы, связанные с переключением трансформатора.

То есть, получается так, что любое искажение синусоиды – это, по сути, комплекс других синусоид, которые имеют свою амплитуду и размеры. Оптимальный же вариант – это одна синусоида с определенной частотой волны и ее амплитудой. В данном случае частота должна быть 50 герц, а амплитуда 310 вольт. Все остальные амплитуды необходимо просто погасить.

Импульсные помехи

Все помехи, о которых было описано выше, поддаются математическим объяснениям. Поэтому с ними легко справиться. Но есть и другие, которые не поддаются прогнозированию. Это так называемые импульсные помехи, а точнее сказать, броски напряжения, которые могут возникнуть в любой момент. Во-первых, они краткосрочные. Во-вторых, при их появлении резко вырастает напряжения до высоких величин, что негативно сказывается на техническом состоянии бытовой техники.



Импульсные помехи необходимо подавить. Именно для этого и используются сетевые фильтры.

Устройство и схема

Схема сетевого фильтра достаточно проста. Для того чтобы понять, как работает этот прибор, необходимо понять, как можно погасить скачкообразные помехи в сети. К примеру, резисторы. Сопротивление этих приборов не зависит от силы тока, который проходит через них. Но вот индуктивность и емкость прямо пропорциональны току. То есть, получается так, что чем выше сила тока и напряжение, тем больше вырастает сопротивление катушки индуктивности.

Это качество и применяется в фильтрах для подавления краткосрочных скачков напряжения с большой ее величиной. Для этого всего лишь необходимо установить две катушки индуктивности в фазный и нулевой проводник. Кстати, их индуктивность может располагаться в достаточно широком диапазоне от 60 до 200 мкГн.



Что касается резисторов, то их тоже можно устанавливать в сетевой фильтр для компьютера или телевизора.

Внимание! Нельзя в сетевых фильтрах использовать резисторы с большим сопротивлением. Это может повлиять на само напряжение, а точнее сказать, на его падание. Так что максимальное сопротивление резисторов – 1 Ом.

Специалисты считают, что среди всех предлагаемых моделей на сегодняшний день эффективными являются сетевые фильтры LC. Все дело в том, что в их конструкции кроме катушек индуктивности установлены и конденсаторы. Кстати, их емкость варьируется в пределах от 0,22 до 1,0 мкФ. При этом необходимо учитывать, что напряжение конденсатора должно быть почти в два раза выше напряжения сети. Это запас на случай высокого скачка.

Зачем такая сложная схема?

  • «L» — это катушка, которая будет выравнивать скачки тока.
  • «C» — это конденсатор, который будет гасить высокие скачки напряжения.

Возвращаемся к импульсным помехам. Их можно гасить с помощью специального полупроводникового элемента – варистора. По сути, это резистор, который в штатном режиме, то есть, при низком напряжении, обладает высоким сопротивлением и ток через себя не пропускает. Как только ток в сети поднимается до номинала (470 В) вариатора, он сбрасывает сопротивление и пропускает ток.



Итак, подведем итог. Сетевой фильтр для компьютера или другого бытового электронного прибора в своей конструкции должен содержать:

  • Соединенные последовательно две катушки.
  • Конденсатор, подключенный параллельно.
  • Варистор.
  • Резисторы.

Внимание! Все элементы необходимо строго подбирать под нагрузку в сети. То есть, номинальный ток элементов подгоняется под потребляемую мощность бытового прибора. Это важно будет для тех, кто решил провести сборку сетевого фильтра своими руками.

Что на практике?

Во-первых, начнем с того, что для таких бытовых приборов, как электрический чайник, плита, фен, утюг и прочие, то есть, для мощных агрегатов, скачки напряжения, а тем более импульсное искажение напряжения, не являются помехами. На их корректную работу они не влияют, и качество эксплуатации от этого не страдает. То есть, сетевые фильтры им не нужны.

А вот всем остальным приборам (телевизорам, компьютерам, музыкальным центрам и так далее) фильтр необходим. Правда, все перечисленные аппараты потребляют мизер энергии, так что небольшой прибор в несколько ампер будет достаточным.

Кстати, необходимо отметить, что основная масса используемых в быту фильтров, как таковыми не являются. Все дело в конструкции, в которой установлен всего лишь варистор, да небольшой контактный выключатель, он отключает сеть при высоких показателях напряжения. По сути, это обычная биметаллическая пластина. Сделать из этого прибора настоящий фильтр не проблема. Придется вооружиться паяльником и приобрести необходимые детали.



Внимание! Учтите, что катушки с большой емкостью, предназначенные для больших нагрузок, являются деталями громоздкими и дорогими. Поэтому их использовать в бытовых фильтрах нет необходимости.

Как правильно выбрать?

Итак, вопрос, как выбрать сетевой фильтр, встречается достаточно часто. Поэтому есть необходимость разобрать основные критерии выбора и определить, какой сетевой фильтр лучше.

  • Показатель поглощения импульсных искажений. Измеряется этот показатель в джоулях. Обычно он указывается и на упаковке, и на корпусе прибора. В данном случае, чем он будет больше, тем лучше, потому что такой фильтр будет гасить импульсные скачки напряжения высокой величины.
  • Количество розеток (варьируется от одной до восьми).
  • Длина питающего провода. В принципе, сетевые фильтры выполняют сразу две функции: защиты и удлинителя. Так что длина провода – это удобство использования.
  • Есть модели, в конструкции которых присутствуют телефонные разъемы. Это может быть один разъем или несколько. Второй вариант предпочтительнее. Можно одновременно запитать телефон, модем, факс.
  • Наличие светового индикатора. Он показывает, что все элементы фильтра работают.


Выбор сетевого фильтра также зависит от того, где он будет использоваться. То есть, дома, в офисе или на производстве. Если говорить о домашних моделях, то это компактные устройства с пятью розетками. Некоторые производители устанавливают и общий выключатель, и отдельные выключатели к каждой розетке, что очень удобно. Есть фильтры и с шестью розетками, в которых шестая – это розетка под нестандартные адаптеры.

Заключение по теме

Итак, в этой статье было рассмотрено несколько вопросов, которые касались сетевых фильтров. И основной из них – что такое сетевой фильтр? Конечно, для многих обывателей теоретическая часть, наверное, была не интересна. Хотя некоторые позиции являются основополагающими, и знать их надо. А вот вопрос, как выбрать сетевой фильтр – самый важный для обычных потребителей. Поэтому возьмите его на вооружение, когда пойдете в магазин. И последнее. Сетевые фильтры – простая необходимость. Отказываться от этих приборов не стоит.

Похожие записи:



Статьи по теме: