Самодельный асинхронный двигатель. Преобразование асинхронного двигателя в генератор своими руками

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели-самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10 -6,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,

Холостой ход

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости.

Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы.

Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте.

Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

· бытовые сварочные трансформаторы;

· электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);

· электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;

· электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов.

Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии. Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт.

Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соs φ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ- косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея должна подключаться параллельно рабочей обмотке. Можно использовать уже имеющийся фазосдвигающий конденсатор, подключив его к рабочей обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220 В /380 В.

Литература:

Л.Г. Прищеп Учебник сельского электрика. М.: Агропромиздат, 1986.
А.А. Иванов Справочник по электротехнике.- К.: Высшая школа, 1984.
cm001.narod.ru

"Сделай сам" 2005, № 3, с.78 - 82

Все бытовые приборы, которые сегодня используются для домашнего хозяйствования, работают от электроэнергии. То есть, получается так, что электрический ток становится основной механической работы приборов. Но есть у этой зависимости обратная сторона – можно из механической энергии получить электрическую. И этим многие умельцы пользуются, создавая генератор из асинхронного двигателя своими руками.

Все, у кого есть домик за городом, сталкиваются с проблемой непостоянной подачи электроэнергии. Скажем прямо, это проблема номер один дачных поселков. Выйти из этого положения помогают генераторы, работающие на бензине или солярке. Правда, такие энергетические приборы – удовольствие не из дешевых, поэтому многие дачники собирают генераторы своими руками, используя для этого асинхронный двигатель.

Как работает асинхронный генератор

Итак, как было сказано выше, асинхронный двигатель может работать в режиме генератора только в том случае, если ему создать крутящий момент ротора и правильно подобрать и соединить конденсаторную группу.

Что касается крутящего момента, то здесь огромное количество конструкций и приборов, которые этот крутящий момент могут создать. Вот только несколько примеров.

  • Это может быть любой бензиновый или дизельный двигатель небольшой мощности. Многие мастера для этого используют бензопилы или мотоблоки. Чтобы увеличить скорость вращения ротора электродвигателя, необходимо рассчитать соотношение диаметра шкивов, установленных на роторе и валу бензодвигателя. Вращение передается с помощью ремня, цепь в данном случае не используется в виду высокой скорости вращения.
  • Можно механическую энергию создать с помощью воды, установив под ее поток лопастную конструкцию, похожую на винт корабля или катера.
  • Есть вариант с использованием ветряка. Обычно такие приспособления устанавливают в степных зонах, где ветер всегда присутствует.

Это три основных способа получить электрический ток через асинхронный двигатель.

Внимание! Все специалисты уверяют, что идеальный вариант использования двигателя для механической энергии тот, у которого так называемый вечный холостой ход. То есть, скорость вращения не изменяется и является величиной постоянной. К тому же вам придется увеличить скорость вращение вала электродвигателя, которая будет отличаться от номинальной с увеличением на 10%.

Узнать номинальную скорость вращения можно на бирке или в паспорте прибора. Ее единица измерения – об/мин. Если этот показатель вы не нашли, то можно его определить, если включить мотор в питающую электрическую сеть, установив предварительно на валу тахометр.

Теперь что касается конденсаторов и схемы соединения электродвигателя. Во-первых, есть определенная зависимость емкости конденсаторов от мощности генератора. Вот она в таблице ниже.


Во-вторых, емкость конденсаторов на каждой обметке двигателя одинаковая. В-третьих, учитывайте тот момент, что высокая емкость может привести к перегреву электродвигателя. Поэтому строго придерживайтесь соотношения по таблице. В-четвертых, монтаж и сборка конденсаторной группы – дело ответственное, поэтому будьте внимательны. Очень важна в данном деле изоляция.

Совет! Соединять конденсаторы между собой надо по схеме треугольника. А обмотки по схеме звезда.

Кстати, вот внизу схема включения электродвигателя в качестве генератора.

И еще один момент. Генератор из асинхронного двигателя короткозамкнутого выдает очень большое напряжение. Поэтому если вам необходимо напряжение 220В, то рекомендуется после него установить понижающий трансформатор. Переделать можно и однофазные электродвигатели небольшой мощности, которые используются в бытовых приборах. Конечно, они будут также маломощными, но включить с их помощью лампочку или подключить модем не будет проблемой. Кстати, начинающие домашние мастера начинают свою деятельность в качестве электрика именно с таких небольших приборов. Их схема проста, детали доступны, к тому же сам собранный прибор практически безопасен.

  1. Генератор из асинхронного двигателя – прибор повышенной опасности. И неважно, какой у него мотор, который передает механическую энергию. В любом случае необходимо позаботиться о безопасности эксплуатации. Самый простой способ – провести грамотно изоляцию прибора.
  2. Если асинхронный генератор будет использован периодически в качестве источника электроэнергии, то его необходимо укомплектовать измерительными приборами. Обычно для этого используют тахометр и вольтметр.
  3. Конечно, должны быть в схеме агрегата и две кнопки: «ВКЛ» и «ВЫКЛ».
  4. Обязательное условие – заземление.
  5. Учтите и тот факт, что мощность асинхронного генератора обычно отличается от мощности самого электродвигателя на 30-50%. Это связано с потерями при преобразовании механической энергии в электрическую.
  6. Обращайте внимание и на температурный режим эксплуатации. Как и двигатель внутреннего сгорания, генератор будет нагреваться.

Заключение по теме

Сделать своими руками генератор из обычного асинхронного двигателя не проблема. Здесь важно соблюсти все требования, которые были нами описаны выше. Небольшая неточность, и все может пойти неправильно. Во всяком случае, получить ток напряжением 220 вольт уже не получится, а если и получится, то сам агрегат долго не проработает.


Пенсионер мастерит ветряки и экономит на электроэнергии

Пенсионер из Амурской области решил в одиночку бороться с повышением тарифов на электроэнергию. Желание сделать почти невозможное возникло после того, как пришли очередные счета за коммунальные услуги.

Тогда бывший энергетик составил собственный план электрификации всего участка. Теперь наверху крутятся лопасти, внизу загораются лампочки. О том, как ветер принёс перемены

Асинхронный электродвигатель в качестве генератора

Работа асинхронного электродвигателя в генераторном режиме

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с ф азным ротором . Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название - короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314· U2 · C · 10-6,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А

Холостой ход

ёмкость, мкФ

реактивная мощность, квар

ёмкость, мкФ

реактивная мощность, квар

ёмкость, мкФ

реактивная мощность, квар

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом. Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя. В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя - генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

· бытовые сварочные трансформаторы;

· электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);

· электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;

· электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии. Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ - косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.


Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220/380 В.

Всем привет! Сегодня рассмотрим как сделать самодельный генератор из асинхронного двигателя своими руками. Данный вопрос меня давно интересовал, только как то не было времени взяться за его реализацию. А теперь давайте немного займемся теорией.

Если взять и раскрутить от какого нибудь первичного двигателя асинхронный электродвигатель, то следуя принципа обратимости электрических машин можно заставить его вырабатывать электрический ток. Для этого нужно вращать вал асинхронного двигателя с частотой, равной или чуть больше асинхронной частоты его вращения. В результате остаточного магнетизма в магнитопроводе электродвигателя на зажимах статорной обмотки будет индуктироваться некоторая ЭДС.

Теперь возьмем и подключим к выводам статорной обмотки, как показано на рисунке ниже, неполярные конденсаторы С.

При этом по обмотке статора начнет протекать опережающий емкостной ток. Он будет называться намагничивающим. Т.е. произойдет самовозбуждение асинхронного генератора и ЭДС будет расти. Значение ЭДС будет зависеть от характеристики как самой электрической машины, так и от емкости конденсаторов. Тем самым мы с вами превратили обычный асинхронный электродвигатель в генератор.

Теперь поговорим о том, как правильно подобрать конденсаторы для самодельного генератора из асинхронного двигателя. Емкость нужно подбирать так, чтобы генерируемое напряжение и отдаваемая мощность асинхронного генератора соответствовала мощности и напряжению при работе его в качестве электродвигателя. Данные смотри в таблице ниже. Они актуальны для возбуждения асинхронных генераторов напряжением 380 вольт и с частотой вращения от 750 до 1500 об/мин.

С увеличением нагрузки на асинхронный генератор напряжение на его зажимах будет стремиться упасть(увеличиться индуктивная нагрузка на генератор). Для поддержания напряжения на заданном уровне необходимо подключать дополнительные конденсаторы. Для этого можно использовать специальный регулятор напряжения, который при понижении напряжения на выводах статора генератора будет с помощью контактов подключать дополнительные батареи конденсаторов.

Частота вращения генератора в нормальном режиме должна превышать синхронную на 5-10 процентов. То есть если частота вращения составляет 1000 об/мин, то нужно его раскручивать с частотой 1050-1100 об/мин.

Один большой плюс асинхронного генератора в том, что в качестве его можно использовать обычный асинхронный электродвигатель без переделок. Но не рекомендуется особо увлекаться и делать генераторы из электромоторов мощностью более 15-20 кВ*А. Самодельный генератор из асинхронного двигателя отличное решение для тех, у кого нет возможности использовать классический генератор kronotex ламинат . Удачи вам во всем и пока!

Все электрические машины функционируют в соответствии с законом электромагнитной индукции, а также с законом взаимодействия проводника с током и магнитного поля.

Электрические машины по типу питания подразделяются на машины постоянного и переменного тока . Постоянный ток создается за счет источников бесперебойного питания. Для машин постоянного тока характерно свойство обратимости. Это означает, что они способны работать как в двигательном, так и в генераторном режиме. Данное обстоятельство можно объяснить с точки зрения аналогичных явлений в работе обеих машин. Более детально конструктивные особенности двигателя и генератора рассмотрим далее.

Двигатель

Двигатель предназначен для преобразования электрической энергии в механическую . В промышленном производстве двигатели применяются в качестве приводов на станках и прочих механизмах, являющихся частью технологических процессов. Также двигатели используются в бытовых приборах, к примеру, в стиральной машине.

При нахождении в магнитном поле проводника в виде замкнутой рамки, силы, которые приложены к рамке, приведут данный проводник к вращению. В таком случае, речь будет идти о простейшем двигателе .

Как было указано ранее, работа двигателя постоянного тока осуществляется от источников бесперебойного питания, к примеру, от аккумуляторной батареи, блока питания. У двигателя имеется обмотка возбуждения. В зависимости от ее подключения, различают двигатели с независимым и самовозбуждением, которое, в свою очередь, может быть последовательным, параллельным и смешанным.

Подключение двигателя переменного тока производится от электрической сети . Исходя из принципа работы, двигатели подразделяются на синхронные и асинхронные.

Главным отличием синхронного двигателя является наличие обмотки на вращающемся роторе , а также имеющийся щеточный механизм, служащий для подведения тока на обмотки. Вращение ротора осуществляется синхронно вращению магнитного поля статора. Отсюда двигатель имеет такое название.

В асинхронном двигателе важным условием является то, что вращение ротора должно быть медленнее вращения магнитного поля . При несоблюдении данного требования наведение электродвижущей силы и возникновение электротока в роторе оказывается невозможным.

Асинхронные двигатели применяются чаще, однако у них имеется один значительный недостаток – без изменения частоты тока невозможно регулирование скорости вращения вала. Данное условие не позволяет достичь вращения с постоянной частотой. Также значительным недостатком является ограничение по максимальной скорости вращения (3000 об./мин .).

В случаях необходимости достижения постоянной скорости вращения вала, возможности ее регулирования, а также достижения скорости вращения, превышающей максимально возможную для асинхронных двигателей, применяют синхронные двигатели.

Генератор

Проводник, перемещаясь между двумя магнитными полюсами, способствует возникновению электродвижущей силы. Когда проводник замыкают, то при воздействии электродвижущей силы в нем возникает ток. На данном явлении основывается действие электрического генератора .

Генератор способен вырабатывать электрическую энергию из тепловой или химической энергии. Однако наиболее широкое распространение получили генераторы, преобразующие механическую энергию в электрическую.

Основные составные элементы генератора постоянного тока:

  • Якорь, выступающий в качестве ротора.
  • Статор, на котором располагается катушка возбуждения.
  • Корпус.
  • Магнитные полюса.
  • Коллекторный узел и щетки.

Генераторы постоянного тока используются не так часто. Основные сферы их применения: электрический транспорт, сварочные инверторы, а также ветроустановки.

Генератор переменного тока имеет схожую конструкцию с генератором постоянного тока, но отличается строением коллекторного узла и обмотками на роторе.

Так же как и в случае с двигателями, генераторы могут быть синхронными и асинхронными. Разница между данными генераторами заключается в строении ротора. У синхронного генератора катушки индуктивности расположены на роторе, а у асинхронного генератора для расположения обмотки на валу имеются специальные пазы.

Синхронные генераторы применяют, когда необходима выдача тока с высокой пусковой мощностью на короткий промежуток времени, с превышением номинальной. Применение асинхронных генераторов больше предусмотрено в быту, для энергетического снабжения бытовых приборов, а также для освещения, так как электрическая энергия, вырабатывается практически без искажений.

Чем отличается генератор от двигателя?

Подводя итог, важно отметить, что функционирование двигателей и генераторов основано на общем принципе электромагнитной индукции. Конструкция данных электрических машин аналогична, однако имеется различие в конфигурации ротора.

Главным же отличием является функциональное назначение генератора и двигателя: двигатель вырабатывает механическую энергию, потребляя электрическую, а генератор наоборот вырабатывает электрическую энергию, потребляя механическую, либо другой вид энергии.



Статьи по теме: