Генератор его основные элементы принцип действия. Как работает электрогенератор

Электрогенератор – один из составляющих элементов автономной электростанции , а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии . Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.


Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток . Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях , так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

История

Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока . Ранние машины были разработаны такими пионерами, как Майкл Фарадей и Ипполит Пикси .

Фарадей разработал «вращающийся треугольник», действие которого было многополярным - каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году . Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году . Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший частоты между 100 и 300 герц . В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года, были введены многофазные альтернаторы.

Принцип действия генератора основан на действии электромагнитной индукции - возникновении электрического напряжения в обмотке статора , находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита - ротора при прохождении по его обмотке постоянного тока . Переменное напряжение преобразуется в постоянное полупроводниковым выпрямителем .

Автомобильный генератор

Автомобильный генератор переменного тока. Приводной ремень снят.

Генератор переменного тока используется на современных автомобилях для заряда батареи аккумуляторов и для энергоснабжения автомобильной электрической системы. В генераторах переменного тока не используется коммутатор, это даёт большое преимущество над генераторами постоянного тока: они проще, легче и дешевле. Автомобильные генераторы переменного тока используют набор выпрямителей (диодный мост) для преобразования переменного тока в постоянный ток. Для производства постоянного тока с низкими пульсациями, автомобильные генераторы переменного тока имеют трёхфазную обмотку и трёхфазный выпрямитель .

Современные автомобильные генераторы переменного тока имеют встроенный в них регулятор напряжения . Ранее устанавливались регуляторы напряжения только аналогового вида. На данный момент реле регуляторы перешли на цифровой канал так называемая CAN шина .

Морские генераторы переменного тока

Морские генераторы переменного тока в яхтах с соответствующей адаптацией к солёно-водной окружающей среде.

Бесщёточные генераторы переменного тока

Бесщеточный генератор состоит из двух генераторов на одном валу. Маленькие бесщеточные генераторы могут выглядеть как одна единица, но две части легко идентифицируются на больших генераторах. Большая часть из двух является основным генератором и меньшая является возбудителем. Возбудитель имеет стационарные катушки поля и вращающегося якоря (мощность катушек). Основной генератор использует противоположные конфигурации с вращающимся полем и стационарные катушки. Мостовой выпрямитель (вращающийся выпрямитель) монтируется на пластину, прикрепленную к ротору. Ни щетки, ни контактные кольца не используются, что сокращает число изнашивающихся частей.

Индукционный генератор

В отличие от остальных генераторов, в основе работы индукционного генератора лежит не вращающееся магнитное поле, а пульсирующее, иначе говоря поле изменяется не в функции перемещения, а в функции времени, что в конечном счёте (наведение ЭДС) даёт такой же результат.

Конструкция индукционных генераторов предполагает размещение и постоянного поля и катушек для наведения ЭДС на статоре, ротор же остаётся свободным от обмоток, но обязательно имеет зубцовую форму, так как вся работа генератора основана на зубцовых гармониках ротора.

Генераторы для малой энергетики

Для мощностей до 100 кВт широкое применение нашли одно и трехфазные генераторы с возбуждением от постоянных магнитов. Применение высокоэнергетических постоянных магнитов состава неодим-железо-бор позволило упростить конструкцию и значительно уменьшить размеры и вес генераторов, что является критически важным для малой ветроэнергетики.

Конструкция генератора переменного тока

В самом общем случае, наиболее часто применяемый трехфазный генератор переменного тока состоит из явнополюсного ротора с одной парой полюсов (маломощные оборотистые генераторы) или 2 парами их, расположенными крестообразно (наиболее распространенные генераторы мощностями до нескольких сот киловатт. Такая конструкция не только позволяет более рационально использовать материал, но и для промышленной частоты переменного тока 50 Гц дает рабочую частоту вращения ротора 1500 оборотов в минуту, что хорошо согласуется с тяговыми оборотами дизельных двигателей этой мощности), а также статора с 3 (в первом случае) или 6 (во втором) силовыми обмотками и полюсами. Напряжение с силовых обмоток и есть то, которое подается потребителю.

Ротор может быть выполнен на постоянных магнитах только для весьма маломощных генераторов, во всех остальных случаях он имеет намотку т.н. обмотки возбуждения, то есть представляет из себя электромагнит постоянного тока, запитываемый во вращающемся роторе через щёточно-коллекторный узел с простыми кольцевыми контактами, более устойчивыми к износу нежели разрезной ламельный коллектор машин постоянного тока.

В сколько-либо мощном генераторе переменного тока с обмоткой возбуждения на роторе, неизбежно встает вопрос - какой величины ток возбуждения подавать на катушку? Ведь от этого зависит выходное напряжение такого генератора. И это напряжение должно поддерживаться в определенных рамках, например, 380 Вольт, вне зависимости от тока в цепи потребителей, значительная величина которого способна также значительно уменьшать выходное напряжение генератора. Кроме этого, нагрузка по фазам вообще может быть очень неравномерной.

Этот вопрос решается в современных генераторах, как правило введением в выходные цепи фаз генератора электромагнитных трансформаторов тока, соединенных вторичными обмотками треугольником или звездой, и дающими на выходе переменное трехфазное напряжение амплитудой единицы - десятки вольт, строго пропорциональное и согласованное по фазе с величиной тока нагрузки фаз генератора - чем больше потребляемый в данный момент по данной фазе ток, тем больше напряжение на выходе соответствующей фазы соответствующего токового трансформатора. Этим и достигается стабилизирующий и авторегулирующий эффект. Все три регулирующие фазы с вторичных обмоток токовых трансформаторов далее заводятся на обычный 3-фазный выпрямитель из 6 полупроводниковых диодов, и на выходе его получается постоянный ток нужной величины, и подаваемый на обмотку возбуждения ротора через щёточно-коллекторный узел. Схема может быть дополнена реостатным узлом для некоторой свободы регулирования тока возбуждения.

В устаревших или маломощных генераторах вместо токовых трансформаторов применялась система из мощных реостатов, с вычленением рабочего тока возбуждения за счет изменения падения напряжения на резисторе при изменении тока через него. Эти схемы были менее точны и гораздо менее экономичны.

В обоих случаях существует проблема появления начального напряжения на силовых обмотках генератора в момент начала его работы - действительно, если возбуждения ещё нет, то и току во вторичных обмотках токовых трансформаторов взяться неоткуда. Проблема, однако, решается тем что железо ярма ротора обладает некоторой способностью к остаточному намагничиванию, эта остаточная намагниченность оказывается достаточной для возбуждения в силовых обмотках напряжения в несколько вольт, достаточного для самовозбуждения генератора и выхода его на рабочие характеристики.

В генераторах с самовозбуждением - серьезную опасность представляет случайная подача внешнего напряжения промышленной электрической сети на силовые обмотки статора. Хотя это не приводит к каким-то негативным последствиям для самих обмоток генератора, мощное переменное магнитное поле от внешней сети эффективно размагничивает статор, в результате чего генератор теряет способность к самовозбуждению. В этом случае требуется начальная подача напряжения возбуждения от какого-то внешнего источника, например, автомобильного аккумулятора, иногда такая процедура полностью излечивает статор, но в некоторых случаях необходимость подачи внешнего возбуждения остается навсегда.

Главный генератор переменного тока

Главный генератор состоит из вращающегося магнитного поля, как было указано ранее, и неподвижной арматуры (генераторные обмотки)

Гибридные автомобили

См. также

Ссылки

  • Alternators . Integrated Publishing (TPub.com).
  • Wooden Low-RPM Alternator . ForceField, Fort Collins, Colorado, USA.

Генератор переменного тока - что это такое? Это электрическая машина, преобразующая энергию механического взаимодействия в электроэнергию. Как она работает? Закон электромагнитной индукции является основным в принципах работы такого устройства, как генератор переменного тока. Как известно из законов электромагнетизма, электродвижущая сила (ЭДС) может индуктироваться (создаваться) только в нескольких случаях: при изменении параметров магнитного потока вокруг самого проводника или же при движении проводника в магнитных полях. Магнитное поле - это материальная среда, которую можно обнаружить исключительно эмпирическим (опытным путем). То есть для выявления наличия или отсутствия такого силового поля в область его возможного действия необходимо внести проводник с током или намагниченное тело.

Характеристики генератора

В таком устройстве, как генератор переменного тока, основную часть занимает электромагнит. Он состоит из ферримагнитного сердечника и катушки и предназначен для формирования магнитного потока. Есть набор основных требований, которые предъявляются к подобным машинам: диапазон вращения от 50 до 12000 оборотов за минуту, широчайший диапазон возможных мощностей (от нескольких ватт до сотен мегаватт), минимальные масса и габариты, высокая надежность и работоспособность.


Трехфазный генератор переменного тока

Обычно такая машина бывает синхронной. Основная ее задача - преобразование любого вида энергии в электроэнергию. Традиционно, это механическая энергия. Почему генератор переменного тока называют синхронным? Это такая бесколлекторная машина, у которой скорость вращения постоянная и при заданной частоте определяется числом полюсов. Генератор переменного тока получил огромное распространение в производстве и в железнодорожном транспорте. Именно благодаря синхронности вращения его используют на рефрижераторных секциях и тепловозах.

Генератор переменного тока: устройство и основные принципы действия

Если вращать ротор и индуктор, то в обмотках статора начнет индуктироваться ЭДС. Именно это явление - основа для работы как трехфазных, так и однофазных машин. Благодаря широчайшему применению на тепловозах, первичным двигателем в таких тяговых синхронных генераторах может быть даже дизельный (двигатель внутреннего сгорания). Неподвижная часть у генератора переменного тока - статор, который состоит из сердечника и корпуса.

В пазы статора вложена обмотка, благодаря которой индуктируется ЭДС. Сердечник набирают из спрессованных листов специальной электротехнической стали. Ротор - это вал, на котором закреплены сердечники генераторных полюсов. Существуют полюса ярко- и слабовыраженные. Обмотка выполняется из медных проводов, обычно круглого или же прямоугольного сечения. Концы обмотки выводят к контактным кольцам. С помощью установленных в щеткодержателях щеток, которые прижимаются к контактным поверхностям пружинами, осуществляется токосъём. Учитывая несложную конструкцию, вполне реально сделать генератор переменного тока своими руками. Принцип действия его крайне прост. Ротор вращается при помощи двигателя. Магнитное поле ротора вращается с ним вместе. Именно по этому принципу и работает генератор переменного тока.

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.



В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ? , который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.



Статьи по теме: